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Abstract

We study the dynamics of relaxation and thermalization in an exactly

solvable model of a particle interacting with an harmonic oscillator bath.

Our goal is to understand the effects of non-Markovian processes on the re-

laxational dynamics and to compare the exact evolution of the distribution

function with approximate Markovian and Non-Markovian quantum kinetics.

There are two different cases that are studied in detail: i) a quasiparticle (reso-

nance) when the renormalized frequency of the particle is above the frequency

threshold of the bath and ii) a stable renormalized ‘particle’ state below this

threshold. The time evolution of the occupation number for the particle is

evaluated exactly using different approaches that yield to complementary in-

sights. The exact solution allows us to investigate the concept of the formation

time of a quasiparticle and to study the difference between the relaxation of

the distribution of bare particles and that of quasiparticles. For the case of

quasiparticles, the exact occupation number asymptotically tends to a statisti-

cal equilibrium distribution that differs from a simple Bose-Einstein form as a

result of off-shell processes whereas in the stable particle case, the distribution

of particles does not thermalize with the bath. We derive a non-Markovian

quantum kinetic equation which resums the perturbative series and includes

off-shell effects. A Markovian approximation that includes off-shell contri-

butions and the usual Boltzmann equation (energy conserving) are obtained

from the quantum kinetic equation in the limit of wide separation of time

scales upon different coarse-graining assumptions. The relaxational dynamics
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predicted by the non-Markovian, Markovian and Boltzmann approximations

are compared to the exact result. The Boltzmann approach is seen to fail in

the case of wide resonances and when threshold and renormalization effects

are important.
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I. INTRODUCTION AND MOTIVATION

Recent advances in semiconductor femtosecond spectroscopy [1,2] highlight the need
for a deeper theoretical understanding of the relaxational dynamics of hot carriers that
goes beyond Boltzmann kinetics. Boltzmann or semiconductor Bloch equations, are based
on strict energy conservation and result in a Markovian description as a consequence of
averaging over microscopic time scales. On short time scales, the time-energy uncertainty
principle comes into play and off-shell (non-energy conserving) processes lead to quantum
kinetic equations with memory effects, i.e. non-Markovian effects.

Ultrafast relaxation in semiconductors are typically studied by exciting a semiconductor
sample with a femtosecond laser [3]- [5]. The subsequent dynamics of the photoexcited
carriers is then studied by measuring the optical or transport properties of the sample at
different time delays. These experiments demonstrate the breakdown of Boltzmann kinetics
for periods less than the optical lattice oscillation period (around 115 fs in GaAs [5]) and
emphasize the need for a quantum kinetic description of the relaxational dynamics.

Motivated by these new developments, there is a rekindled interest on a deeper theoretical
understanding of quantum kinetics and critical analysis of transport and kinetic approaches
are beginning to emerge [8]- [24]. In particular recently the initial stages of pre-equilibration
during which quasiparticle correlations begin to build had been investigated in a many body
system [8]. The pre-equilibrium stage cannot be studied within a Boltzmann approach
because the early time dynamics depends on the initial preparation of the state and is
determined by virtual processes that do not conserve energy on short times (off-shell).

Besides semiconductor systems, the interest in quantum kinetics is truly interdisciplinary:
in dense plasma [9], nuclear matter [8,10,11] and high energy physics and cosmology [12]-
[14] to cite but a few applications.

A very powerful method to derive quantum kinetic equations uses the non-equilibrium
Green’s functions within the Keldysh formalism [15] which leads to the Kadanoff-Baym
equations [16]. In order to derive quantum kinetic equations some assumptions must be
invoked. Usually the generalized Kadanoff-Baym ansatz [17]- [21] with renormalized one
particle Green’s function propagators [22] is used to relate the two-time correlation functions
with the one-time distribution function. An alternative approach to derive quantum kinetic
equations is by truncating the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy
[23,24].

Although there is ample experimental and numerical confirmation of kinetics described
by Boltzmann or kinetic Bloch equations in processes in which there is a wide separation
between relaxational and microscopic time scales, the situation for non-Markovian quantum
kinetics is less well understood.

An important limitation in the numerical study of non-Markovian kinetic equations is
the very intensive computational requirements to analyze integro-differential equations with
memory [25]. Thus it is important to try to test relaxation via non-Markovian quantum ki-
netic equations in systems which afford an exact solution. Recently non-Markovian quantum
kinetics has been studied within the context of hot electron relaxation [21] in one dimension.
This model affords an exact solution via bosonization and allows a direct comparison to an
approximate kinetic treatment. Furthermore, improved transport equations that include the
effects of correlations leading to a non-Markovian description have been recently proposed
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[24] and compared to available exact solutions in low dimensional models.
Thus the current experimental efforts in femtosecond relaxation in semiconductors and

the necessity for a deeper understanding of quantum kinetics via non-Markovian transport
equations justifies the study of model systems that can be solved exactly and thus provide
a testing ground for the different types of approximations.

The goal of this article is to study the description of thermalization and relaxational
dynamics in a simple and exactly solvable many body theory to obtain a deeper under-
standing of the off-shell processes (not energy conserving on short time scales) involved in
thermalization and to provide a yardstick to test different approximations.

The aspects that we seek to study in this article are the following:

• How do off-shell effects modify the dynamics of thermalization and relaxation? By off-
shell we here refer to processes that do not conserve energy on short time scales and
threshold effects that are not incorporated in the usual Boltzmann equation. These
are responsible for quasiparticle properties such as widths and wave function renor-
malization.

• A detailed understanding of the relaxation of quasiparticles vs. that of bare and
dressed particles and to explore the definition of a quasiparticle distribution function
that is valid beyond the narrow width approximation. The model under consideration
also allows us to study the formation time of the quasiparticle.

• A comparison of the validity of Markovian (coarse grained) approximations including
the Boltzmann equation, to a non-Markovian description of relaxation which is a
simplified form of the Kadanoff-Baym equations.

Although we anticipate that the answer to many of these questions will in general depend
on the details of the microscopic model, we propose to study a model of a particle (harmonic
oscillator) interacting linearly with a bath of harmonic oscillators. As it will be seen in what
follows this model bears many of the properties of more realistic interacting systems. By
studying different couplings between the particle and the bath, we provide answers to these
(and other) questions and obtain further intuition into more complex situations.

In section II we introduce the model and discuss the different approaches to study the
dynamical evolution of the distribution function. In section III we analyze the dynamics from
the point of view of the time evolution of an initially prepared density matrix which allows
us to establish contact with the fluctuation dissipation relation. Here we distinguish between
bare particle and dressed particle and quasi-particle distributions. The exact solution of the
Heisenberg equations of motion is presented in section IV. In section V we study in detail
the long time dynamics of the distribution function. In section VI we discuss the exact
solution in terms of normal modes and analyze the definition of the quasiparticle number
operator that describes the relaxational dynamics. In section VII we analyze the approximate

relaxational dynamics in terms of i) the Boltzmann equation, ii) the non-Markovian quantum
kinetic equation and iii) a Markovian approximation to the quantum kinetic equation. We
provide a numerical comparison of the exact and approximate kinetics in section VIII. Our
conclusions are summarized in section IX.
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II. THE MODEL

As stated in the introduction, we seek to study aspects of quantum kinetics in a model
that allows to compare approximate treatments of the relaxational dynamics to exact solu-
tions. The model that we choose to describe this situation is that of an oscillator of bare
frequency ω0 (representing the physical mass of the in particle states before the interaction)
coupled linearly with a bath with an infinite number of degrees of freedom given by harmonic
oscillators with frequencies ωk. Although this is a drastic simplification of microscopic inter-
acting theories, this model continues to serve as a testing ground for studies of dissipation
in quantum systems [26]- [32].

The Lagrangian is given by

L[q, Qk] =
1

2

(

q̇2 − ω2
0q

2
)

+
1

2

∑

k

(

Q̇2
k − ω2

k Q2
k

)

− q
∑

k

Ck Qk,

where the different coefficients of q̇2; Q̇2
k (oscillator masses) had been absorbed by a canonical

transformation into a redefinition of the couplings Ck. We now refer to the oscillator q as
the ‘system’ i.e. the degree of freedom whose dynamics we are interested in studying, and
the oscillators Qk as the ‘bath’, these will be integrated out in the non-equilibrium effective
action. This model also describes the interaction of an electron with a phonon or photon
bath in the dipole approximation [31,32].

We will eventually take the limit in which the bath oscillators are distributed continuously
by introducing the bath spectral density J(ω) and where appropriate replacing the discrete
distribution with a continuum one in the following manner:

J(ω) =
π

2

∑

k

C2
k

ωk

δ(ω − ωk)

in such a way that

∑

k

C2
k f(ωk) →

2

π

∫

dω ω J(ω) f(ω). (2.1)

Our main goal is to study the evolution of the number of excitations or ‘particle distri-
bution’ associated with the quanta of the system. Anticipating self-energy renormalization
effects by the bath, we define a reference frequency Ω and introduce the operator that counts
the number of quanta of the system’s degrees of freedom associated with this frequency

n̂(t) =
1

2Ω

[

p2(t) + Ω2q2(t)
]

− 1

2
, (2.2)

where p(t) is the momentum of the particle. The reference frequency could either be taken
to be the bare frequency ω0, or the frequency renormalized by the interaction with the bath,
we will leave this choice unspecified for the moment.

Since the theory is quadratic we can resort to a number of different ways to study the
dynamical evolution:

1. Given an initial density matrix we can evolve it in time exactly and obtain all of the
non-equilibrium correlation functions.
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2. The Heisenberg equations of motion for the operators can be solved exactly and again
we can obtain any correlation function.

3. The normal modes can be found exactly, from which we can find the exact ground
state and also obtain the operators that create the particle or quasiparticle states to
study the asymptotic evolution of non-equilibrium states.

4. We compute exactly the expectation value of the proposed number operator in the
canonical ensemble of the system plus bath and compare the result to the asymp-
totic form of the non-equilibrium distribution function. This allows an unequivocal
description of thermalization in terms of the density matrix.

We will pursue all of the above different approaches, since each particular method pro-
vides different insights and the main goal is to understand this simpler model in detail to
provide intuition into more realistic cases.

III. TIME EVOLUTION OF AN INITIAL DENSITY MATRIX

The first method is to calculate the time evolution of the reduced density matrix, ρr(t),
of the particle that has been prepared at some initial time ti.

This can be achieved by treating the infinite set of harmonic oscillators, Qk, as a ‘bath’
and obtaining an influence functional [27]- [31] by tracing out the bath degrees of freedom.
We assume that the total density matrix for the particle-bath system decouples at the initial
time ti, i.e.

ρ(ti) = ρs(ti) ⊗ ρR(ti),

where ρR(ti) is the density matrix of the bath which describes infinite set of harmonic
oscillators in thermal equilibrium at a temperature T and ρs(ti) is the density matrix of
the particle which is taken to be that of a harmonic oscillator in thermal equilibrium at
temperature T0. More complicated initial density matrices, including correlations between
system and bath degrees of freedom can be studied by following the methods found in [28].

The complete information of non-equilibrium expectation values and correlation func-
tions is completely contained in the time dependent density matrix

ρ(t) = U(t, ti) ρ(ti) U−1(t, ti)

with U(t, ti) the time evolution operator. Real time non-equilibrium expectation values and
correlation functions can be obtained via functional derivatives with respect to sources of
the generating functional [15,33]

Z[j+, j−] = Tr
[

U(∞, ti; j
+) ρ(ti) U−1(∞, ti; j

−)
]

/Trρ(ti),

where j± are sources coupled to the particle coordinate. This generating functional is readily
obtained using the Schwinger-Keldysh method which involves a path integral in a complex
contour in time [15,33]. Real time, non-equilibrium Green’s functions are now obtained as
functional derivatives with respect to the sources. There are four types of free propagators
[15,33]
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〈

Q+
k (t)Q+

k (t′)
〉

= −i G++
k (t, t′) = −i [G>

k (t, t′)θ(t − t′) + G<
k (t, t′)θ(t′ − t)]

〈

Q−
k (t)Q−

k (t′)
〉

= −i G−−
k (t, t′) = −i [G>

k (t, t′)θ(t′ − t) + G<
k (t, t′)θ(t − t′)]

〈

Q+
k (t)Q−

k (t′)
〉

= i G+−
k (t, t′) = −i G<

k (t, t′)
〈

Q−
k (t)Q+

k (t′)
〉

= i G−+
k (t, t′) = −i G>

k (t, t′) = −i G<
k (t′, t),

(3.1)

where the signs ± in the above expressions correspond to the fields and sources on the
forward (+) and backward (−) branches and

G>
k (t, t′) =

i

2ωk

[

(1 + Nk) exp {−iωk(t − t′)} + Nk exp {iωk(t − t′)}
]

G<
k (t, t′) =

i

2ωk

[

(1 + Nk) exp {iωk(t − t′)} + Nk exp {−iωk(t − t′)}
]

Nk =
1

exp {βωk} − 1
. (3.2)

A. The reduced density matrix

The reduced density matrix, ρr(t), is defined as [27]- [31]

ρr(t) =
TrRρ(t)

TrρR(ti)
,

where the subscript R in TrR refers to tracing over the bath degrees of freedom. Taking the
trace over Qk, one obtains the reduced density matrix in terms of the influence functional
[27]- [31], F [q+, q−]

ρr[q, q
′; t] =

∫

dq1dq2 ρ0[q1, q2]
∫

Dq+Dq−exp
{

i
∫

dt
(

L0[q
+] − L0[q

−]
)

}

× F [q+, q−],

(3.3)

with the following boundary conditions on the fields: q+(ti) = q1; q+(∞) = q; q−(∞) =
q′; q−(ti) = q2. ρ0[q1, q2] is the initial density matrix of the particle and

F [q+, q−] = exp







i

2

∑

k

C2
k

∫

dt
∫

dt′
∑

a,b

qa(t)Gab
k (t, t′)qb(t′)







; a, b = +,−

L0[q
±] =

1

2

[

(q̇±)2 − ω2
0(q

±)2
]

.

We will choose the initial density matrix of the particle to be that of an harmonic
oscillator of reference frequency Ω in thermal equilibrium at temperature T0 given by

ρ0[q1, q2] =

√

1

2πσ
exp {ipi(q1 − q2)}

× exp

{

− Ω

2sinh [β0Ω]

[ (

(q1 − qi)
2 + (q2 − qi)

2
)

cosh [β0Ω] − 2(q1 − qi)(q2 − qi)
]

}

,
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where qi and pi are respectively the average position and momentum of the particle, β0 =
1/T0 and

σ =
1

2Ω
coth

[

β0Ω

2

]

=
1 + 2n(0)

2Ω
; n(0) =

1

eβ0Ω − 1
.

The reference frequency Ω will allow to understand the different features of the dynamics
of the dressed particle in the medium, rather than the bare particle with frequency ω0. We
will specify this reference frequency below when we study the dynamics in detail.

Using the Wigner coordinates [27]- [31] which are defined as

x(t′) =
1

2

(

q+(t′) + q−(t′)
)

, r(t′) = q+(t′) − q−(t′), (3.4)

the integrals in eq. (3.3) can be evaluted easily and one obtains the reduced density matrix

ρr[xf , rf ; t] =
1

2
√

π A(t)
exp

{

−1

2

[

σ

(g−(t))2 + R−−(t) − B2(t)

2 A(t)

]

r2
f − 1

4 A(t)
x2

f

+ i

[

ġ(t)

g(t)
− B(t)

2 A(t)

]

xf rf + i

[

B(t)

2 A(t)

(

pi g(t) + qiġ(t)
)

− qi

g−(t)

]

rf

+
1

2 A(t)

(

pig(t) + qiġ(t)
)

xf − 1

4 A(t)

(

pig(t) + qiġ(t)
)2
}

, (3.5)

where

A(t) ≡ Ω2 σ

2
g2(t) +

1

2
R++(t) +

σ

2
ġ2(t)

B(t) ≡ σ

g−(t)
ġ(t) − R+−(t)

R++(t) ≡
∫ t

0
dt′
∫ t

0
dt′′ g(t − t′) K(t′ − t′′) g(t− t′′)

R−−(t) ≡
∫ t

0
dt′
∫ t

0
dt′′

g−(t′)

g−(t)
K(t′ − t′′)

g−(t′′)

g−(t)

R+−(t) ≡
∫ t

0
dt′
∫ t

0
dt′′ g(t − t′) K(t′ − t′′)

g−(t′′)

g−(t)

K(t′ − t′′) ≡
∑

k

C2
k

2ωk

coth

[

βωk

2

]

cos [ωk(t
′ − t′′)]

g−(t′) ≡ ġ(t) g(t− t′) − g(t) ġ(t − t′)

g(t) g̈(t) − ġ2(t)
. (3.6)

The dynamics of the reduced density matrix is completely determined by the function g(t)
which satisfies the following differential equation

g̈(t) + ω2
0 g(t) −

∫ t

0
dt′Σ(t − t′) g(t′) = 0 (3.7)

with initial conditions g(0) = g̈(0) = 0 and ġ(0) = 1. The kernel Σ(t − t′) is the retarded
self energy of the system degree of freedom and it is given by
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Σ(t − t′) = θ(t − t′)
∑

k

C2
k

ωk

sin [ωk(t − t′)] . (3.8)

We will postpone the computation of the function g(t) to the next section and we will
specify the spectral density for the bath in a later section wherein we will compare exact
results to different approximations.

Having obtained the reduced density matrix, we can now obtain the expectation values
of q2(t) and p2(t) and to compute the expectation value of the number operator (2.2), which
after some straightforward algebra is shown to be given by

〈n(t)〉 = −1

2
+ R(t) +

Ω

2

(

p2
i + Ω2σ

)

g2(t) +
(q2

i + σ)

2 Ω
g̈2(t)

+
p2

i + Ω2 (q2
i + 2σ)

2 Ω
ġ2(t) +

piqi

Ω

(

g̈(t) + Ω2g(t)
)

ġ(t), (3.9)

where we have introduced the shorthand notation

R(t) ≡ 1

2 Ω

[

R−−(t) + 2
ġ(t)

g(t)
R+−(t) +

(

ġ2(t)

g2(t)
+ Ω2

)

R++(t)

]

. (3.10)

The expression for R(t) can be simplified by introducing the functions

h(ω, t) ≡
∫ t

0
dτ e−iωτ g(τ)

k(ω, t) ≡
∫ t

0
dτ e−iωτ ġ(τ) (3.11)

= iωh(ω, t) + e−iωtg(t). (3.12)

In terms of these functions, R(t) can be written as

R(t) =
1

4Ω

∑

k

C2
k

ωk

(

1 + 2N(ωk)
) (

|k(ωk, t)|2 + Ω2 |h(ωk, t)|2
)

. (3.13)

The expectation value of the number operator (3.9) in the non-equilibrium density matrix
has two contributions: one that is completely determined by the initial state of the system
(proportional to pi ; qi ; σ) and the other, determined by the bath and given by R(t).
Detailed understanding of the particle number relaxation requires the knowledge of the
dynamical function g(t) which will be studied in the following section.

B. Calculating g(t)

Before specifying a choice of the spectral density of the bath J(ω) we can obtain more
insight by analyzing the real time behavior of g(t) and consequently of < n(t) > in general.
Having determined the general features of the evolution, we will then specify a particular
choice of J(ω) and provide a detailed numerical study comparing with different approxima-
tions in a later section. In general the spectral density fullfils

9



J(ω) =

{

6= 0 for ωth < |ω| < ωc

0 otherwise
(3.14)

where ωth ; ωc are threshold and cutoff frequencies respectively.
The real time evolution of g(t) can be obtained by taking the Laplace transform of eq.

(3.7). Solving for the Laplace transform of g(t), namely g̃(s), one can show that

g̃(s) =
1

s2 + ω2
0 + Σ̃(s)

(3.15)

with the Laplace transform of the retarded self energy given by

Σ̃(s) = −
∑

k

C2
k

ωk

ωk

s2 + ω2
k

→ −2

π

∫

dωJ(ω)
ω

s2 + ω2
, (3.16)

where we have taken the limit of a continuum distribution of bath oscillators as given by
(2.1).

The function g(t) is then given by the inverse Laplace transform

g(t) =
1

2πi

∫

Γ
estg̃(s)ds, (3.17)

where Γ refers to the Bromwich contour running along the imaginary axis to the right of
all the singularities of g̃(s) in the complex s-plane. Therefore we need to understand the
analytic structure of g̃(s) to obtain the real time dynamics of the particle occupation number.

From the expression (3.16) for the Laplace transform of the retarded self-energy, we find
that Σ̃S(s) has cuts along the imaginary s-axis for s = iω ; ωth < |ω| < ωc as can be seen
from

Σ̃S(s = iω ± 0+) = ΣR(ω) ± i ΣI(ω)

with

ΣR(ω) =
2

π
P
∫

dω′ ω′ J(ω′)

ω2 − ω′2
(3.18)

ΣI(ω) = 2 sign(ω)
∫

dω′J(ω′) ω′ δ(ω′2 − ω2)

= sign(ω) J(|ω|) . (3.19)

It is convenient to introduce a renormalized frequency by performing a subtraction of the
self-energy. Clearly the subtraction point is arbitrary, and we choose to subtract at s = 0.
We thus introduce the renormalized frequency as

ω2
R = ω2

0 + Σ̃(s = 0) = ω2
0 − 2

π

∫

dω
J(ω)

ω
, (3.20)

and the once subtracted self energy is given by

Σ̃S(s) = Σ(s) − Σ(s = 0) =
2

π

∫ ∞

0
dω

J(ω)

ω

s2

s2 + ω2
.
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Isolated poles of g̃(s) are at the values sp which satisfy

s2
p + ω2

R + Σ̃S(sp) = 0.

These are purely imaginary when they are below the threshold frequency of the bath (ωth)(see
eqn.3.14), corresponding to renormalized exact stable states of the particle-bath interacting
system.

If the imaginary part of the pole (in the s-variable) ωp is above threshold (ωp > ωth, then
the pole is in the second (unphysical) Riemann sheet and for weak couplings the spectral
density S(ω), defined below, will feature a Breit-Wigner resonance shape where the width
of the resonance is related to the imaginary part of the kernel Σ̃S and the peak of the
resonance is at ωp. The position of these complex poles can be parametrized in terms of real
and imaginary parts as

sp = iωp − Γ.

These correspond to decaying states and are not eigenstates of the interacting Hamiltonian.
If the width Γ << ωp these long-lived resonances are almost energy eigenstates and will be
identified with the quasiparticles of the interacting system in the next section.

Depending on the strength of the coupling with the environment, J(ω), and the value of
ωR, the imaginary part of the pole, ωp, can be above or below the threshold, ωth.
I) Consider first the case in which the pole is above threshold, i.e. ωp > ωth. Since there
are no isolated singularities below threshold, only the cut will contribute to the integral
(3.17).The Bromwich contour Γ in the complex s-plane is chosen as the one shown in fig.
1(b) where all the singularities of g̃(s) are to the left of the contour. Evaluating the integral
along this contour, we obtain

g(t) =
2

π

∫ ωc

ωth

dω S(ω) sin(ωt), (3.21)

where the spectral density S(ω) is given by

S(ω) = ΣI(ω) |g̃(s = iω + ǫ)|2 =
ΣI(ω)

[ω2 − ω2
R − ΣR(ω)]2 + [ΣI(ω)]2

. (3.22)

From the initial condition ġ(0) = 1 we find the sum rule

2

π

∫ ωc

ωth

dω S(ω) = 1 . (3.23)

For weak coupling, the spectral density can be approximated by a Breit-Wigner resonance
and asymptotically g(t) is approximately given by [34]

ġ(t) ∼ Z cos(ωpt + α) e−Γ t ; Γ ∼ ZΣI(ωp)

2ωp

; Z =

[

1 − ∂ΣR(ω)

∂ω2

]−1

ω=ωp

(3.24)

with α a constant phase-shift [34]. We identify this behavior with a typical quasiparticle
which acquires a width through medium effects and whose residue at the quasiparticle pole,
i.e. the wave function renormalization constant, is smaller than one as a consequence of
the overlap between the initial bare particle state and the continuum of the bath. This
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interpretation will be further clarified when we study the exact normal modes in the next
section.
II) Consider next the case in which there is only a single isolated pole below the cut. In
this case, there are two contributions to the integral (3.17); the pole contribution and the
cut contribution. In this case we find

ġ(t) = Z cos(ωpt) +
2

π

∫ ωc

ωth

dω ω S(ω) cos(ωt) , (3.25)

where we define the wave function renormalization Z as in (3.24) above,

Z =

[

1 − ∂ΣR(ω)

∂ω2

]−1

ω=ωp

. (3.26)

Asymptotically at long time, the cut contribution vanishes with a power law determined by
the behavior of S(ω) near threshold [34], and g(t) oscillates with the pole frequency ωp. Just
as in the previous case, the bare particle has been dressed by the bath, and to distinguish
from the bare or quasiparticle we call this state the dressed particle. The position of the
dressed particle pole has been shifted and its residue is smaller than one as a result of the
overlap with the continuum of states of the bath.

From the initial condition ġ(0) = 1, we derive the important sum rule

Z +
2

π

∫ ωc

ωth

dω ω S(ω) = 1. (3.27)

Both cases of the sum rule (3.23) and (3.27) are a consequence of the canonical commutation
relations [16]. Since the spectral density S(ω) is positive semi-definite, the above sum rule
determines that Z ≤ 1.

The expression (3.25) allows us to explore the concept of the dressing time of the particle.
At long times the contribution to g(t) from the continuum vanishes typically as a power law
determined by the behavior of the spectral density near threshold [34] and the contribution
from the pole dominates the dynamics. This contribution results in a asymptotic oscillatory
behavior of ġ(t) with an amplitude determined by the residue Z at the particle pole. The
formation time can be defined to be the time it takes for the amplitude of ġ(t) to reach
its asymptotic value Z (initially ġ(0) = 1). In the case in which the pole is embedded
in the continuum (unphysical Riemann sheet) and we deal with quasiparticles, a similar
concept can be introduced, now being the formation time of the quasiparticle. There are
now two competing time scales: the formation time scale during which the quasiparticle
pole dominates the dynamics and the contribution of the continuum becomes subleading,
and the relaxation time scale which is determined by the imaginary part of the self energy
at the quasiparticle pole, i.e. the width of the resonance. The time scale of formation of
the quasiparticle can be defined to be the time it takes until the exponential fall-off of the
correlation function ensues.

In this case, the two different time scales can only be resolved if they are widely separated
which requires that the resonance be very narrow and the exponential relaxation associated
with the decay of the quasiparticle allows many oscillations to occur. This condition can be
quantified as Γ/ωp << 1 which requires a weak coupling to the bath. We will explore these
situations numerically in a later section where a particular density of states of the bath will
be proposed.
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C. Fluctuation-Dissipation

The main advantage of studying the time evolution of the reduced density matrix is
that it allows to establish a direct relationship between the relaxation of the occupation
number of the “system” and the fluctuation dissipation theorem. The connection between
the fluctuation-dissipation and the Boltzmann equation has been investigated recently in
the semi-classical regime [13].

This relationship is established by re-writing the path integral (P.I.) in eq. (3.3) in terms
of the Wigner coordinates which can be cast in the following probabilistic form [27,28,30]

P.I. =
∫

DxDrDξP [ξ]eiS̃eff(x,r,ξ)

S̃eff(x, r, ξ) =
∫ t

t0

dt′r(t′)
{

−
(

ẍ(t′) + ω2
0x(t′)

)

+
∫

dt′′Σ(t′ − t′′)x(t′′) + ξ(t′)
}

P [ξ] = exp
{

−1

2

∫

dt
∫

dt′ξ(t)K−1(t − t′)ξ(t′)
}

. (3.28)

The path integral over the relative coordinate, r(t), leads to a non-Markovian Langevin
equation for the center of mass coordinate, x(t), in the presence of a stochastic Gaussian
(but colored) noise term ξ(t) [27,28,30]. The noise correlation function is determined by
K(t − t′) given by eq. (3.6).

The fluctuation-dissipation relation is established in the following manner [31]. In the
limit of a continuum distribution of the bath oscillators we find the time Fourier transform
of the retarded self-energy Σ(t), eq. (3.8), to be given by the analytic continuation of the
Laplace transform (3.16) s → ω − iǫ, i.e.

Σ̃(ω − iǫ) = −2

π

∫

dω′ ω′ J(ω′)

[(ω′)2 − (ω − iǫ)2]
. (3.29)

Then we find (for ω > 0)

Im
[

Σ̃(ω)
]

= J(ω) (3.30)

and the Fourier transform in time of the kernel K(t) (3.6) is given by

K̃(ω) =
1

2π
Im

[

Σ̃(ω)
]

coth

[

βω

2

]

. (3.31)

This is the usual fluctuation-dissipation relation [31]. Finally we obtain the bath contribution
to the non-equilibrium occupation number eqn.(3.9), which is determined by R(t) given by
eqn.(3.13), in a form that displays clearly its relationship to the fluctuation dissipation
relation

R(t) =
1

Ω

∫

dωK̃(ω)
(

|k(ω, t)|2 + Ω2 |h(ω, t)|2
)

, (3.32)

where K̃(ω) is the power spectrum of the bath. This expression makes explicit the stochastic
nature of thermalization and establishes a direct relationship with the fluctuation dissipation
theorem.
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IV. THE HEISENBERG OPERATORS

The above results can be understood in an alternative manner by obtaining the real
time evolution of the Heisenberg picture operators, from which the expectation value of the
number operator can be obtained by providing an initial density matrix.

The equation of motion of the Heisenberg operator q(t) is given by

q̈(t) + ω2
0q(t) −

∑

k

C2
k

ωk

∫ t

0
dt′ sin [ωk(t − t′)] q(t′) = −

∑

k

CkQ
(0)
k (t), (4.1)

where Q
(0)
k (t) satisfies the homogeneous equation

Q̈k

(0)
(t) + ω2

kQ
(0)
k (t) = 0 (4.2)

Eq. (4.1) can be solved using Laplace transform, and the operator solution with the initial
condition q(t = 0) = q(0) ; q̇(t = 0) = p(0) is found to be given by

q(t) = p(0)g(t) + q(0)ġ(t) −
∑

k

Ck

∫ t

0
dτ Q

(0)
k (t − τ) g(τ), (4.3)

where g(t) is the same function which was defined in the previous section.
Since the initial density matrix describes a thermal distribution for the quanta of a

harmonic oscillator of reference frequency Ω, it is convenient to write the initial position
and momentum operators in terms of the creation and annihilation operators of a quanta of
frequency Ω as

q(0) =
1√
2Ω

[

b + b†
]

; p(0) = −i

√

Ω

2

[

b − b†
]

.

Also, it is convenient to write Q
(0)
k (t) in terms of the creation and annihilation operators of

a quanta of frequency ωk as

Q
(0)
k (t) =

1√
2ωk

[

ak e−iωkt + a†
k eiωkt

]

. (4.4)

Gathering all terms, q(t) and p(t) become

q(t) =
1√
2Ω

[

b (ġ(t) − iΩg(t)) + b† (ġ(t) + iΩg(t))
]

−
∑

k

Ck√
ωk

[

a†
k eiωkt h(ωk, t) + h.c.

]

,

p(t) =
1√
2Ω

[

b (g̈(t) − iΩġ(t)) + b† (g̈(t) + iΩġ(t))
]

−
∑

k

Ck√
ωk

[

a†
k eiωktk(ωk, t) + h.c.

]

, (4.5)

where h(ωk, t) ; k(ωk, t) are defined in eq.(3.12). The expression (4.5) reveals that the particle
operators create states with overlap with bath continuum.

The expectation value of the occupation number operator n(t) in (2.2) can be evaluated
using an initial density matrix which is diagonal in the basis of the number operators for
system and bath. Assuming a continuum spectrum of the bath oscillators, using (2.1) and
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considering for simplicity the case of vanishing expectation values of q(0) ; p(0) in the initial
density matrix, we find

〈n(t)〉 = − 1

2
+

1 + 2n(0)

4Ω2

(

g̈2(t) + 2Ω2ġ2(t) + Ω4g2(t)
)

+
1

2πΩ

∫

dωJ(ω)
(

1 + 2N(ω)
) (

|k(ω, t)|2 + Ω2 |h(ω, t)|2
)

. (4.6)

Setting qi = 0 ; pi = 0 in the result (3.9) we find that (4.6) reduces to the expression
obtained by the time evolution of the density matrix (3.9) and the last term is identified
with R(t).

The operator method allows to compute any correlation function of operators in the
initial density matrix at arbitrary times, whereas the time evolution of the density matrix
would require the introduction of external sources and taking functional derivatives with
respect to those to obtain unequal time correlation functions.

V. ASYMPTOTIC BEHAVIOR OF THE OCCUPATION NUMBER

The asymptotic behavior of 〈n(t)〉 is completely determined by the long time dynamics
of g(t). We have shown that g(t) vanishes asymptotically for poles in the continuum while
the contribution from the isolated pole dominates for the case in which the pole is below
threshold. We will consider each individual case in detail.

A. Poles in the continuum (ωp > ωth)

In this case the function g(t) vanishes exponentially at asymptotically long times (3.24)
and the asymptotic behavior of the particle occupation number is given by

〈n(∞)〉 = −1

2
+ R(∞) (5.1)

with

R(∞) =
1

2πΩ

∫ ωc

ωth

dω [1 + 2N(ω)] S(ω)
(

Ω2 + ω2
)

, (5.2)

where we used eqs.(3.19) and (3.22), recognized the Laplace transform of g(t) in the long
time limit for eq.(3.13) (using the vanishing of g(t) at long times)

|h(ω,∞)|2 = |g̃(s = iω + ǫ)|2

|k(ω,∞)|2 = ω2 |h(ω,∞)|2 .

It is clear that the asymptotic value of 〈n(∞)〉 is different from the equilibrium occupation
number of the bath N(ωp).

Suppose that the spectral density S(ω) can be approximated by a narrow Breit-Wigner
resonance with
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S(ω) =
Z

2ωp

Γ

(ω − ωp)2 + Γ2

Γ→0→ πZ

2ωp

δ(ω − ωp), (5.3)

where

Γ =
ZΣI(ωp)

2ωp

(5.4)

as would be the case for weak coupling. Then the asymptotic occupation number becomes

〈n(∞)〉 = Z

(

Ω2 + ω2
p

2Ωωp

)

[

N(ωp) +
1

2

]

− 1

2
, (5.5)

which is different from the equilibrium value of the bath.
We now see that choosing the reference frequency Ω = ωp, and introducing a quasiparticle

number operator as

nquasi(t) =
1

2ωpZ

[

p2(t) + ω2
pq

2(t)
]

− 1

2Z
(5.6)

we see that

nquasi(∞) = N(ωp) +
1

2
(1 − 1

Z
) (5.7)

thus the quasiparticle reaches an asymptotic distribution function of almost thermal form
with corrections arising from the wave function renormalization. The factor Z in the defi-
nition of the quasiparticle number operator reflects the fact that the quasiparticle pole has
strength Z rather than one. In the following section it will become clear that the result
(5.7) is a consequence of the complete thermalization of the quasiparticle with the bath and
that the occupation number of quasiparticles becomes the one predicted by the canonical
ensemble as follows from the discussion leading to the eqs.(6.9,6.10) below. This expression,
thus reveals the importance of counting the quasiparticles instead of the bare particles. Even
in the weak coupling limit the distribution of bare particles is not thermal whereas the true
quasiparticle distribution departs perturbatively from a Bose Einstein distribution at the
temperature of the bath.

The asymptotic value of the distribution is approached exponentially. The thermalization
time scale is given by τth = 1/2Γ since it is determined by g2(t) which is the dependence of
the occupation number on the function that determines the real time evolution either of the
density matrix or of the Heisenberg operators.

Even when the occupation number is defined in terms of the true ‘in medium’ pole, there
will be departures from the Bose-Einstein distribution for non-negligible width Γ and when
the strength of the pole Z is substantially smaller than one. These corrections will arise
in the case of broad resonances and may lead to large departures from the Bose-Einstein
distribution. This situation will be explored numerically later.

In the case of a wide resonance, the product N(ω) S(ω) is sensitive to the width of the
resonance. For bath temperature T << ωth the Bose-Einstein distribution will only probe
the tail of the broad spectral density closer to threshold and the product is only sensitive to
the threshold behavior of S(ω) [32].
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In particular if near threshold S(ω) ≈ (ω − ωth)
α then for temperatures T << ωth the

temperature dependence of the equilibrium abundance of unstable particles in the bath is
approximately given by

n(T ; t = ∞) − n(0; t = ∞) ≈ e−
ωth
T T α+1

which reveals threshold corrections to the Boltzmann exponential suppression. This result
has been anticipated in [32] within a different context.

In the opposite limit when T >> ωp the product is sensitive to the width of the resonance
and the details of the spectral density. Thus in the case of a broad resonance the departures
from a Bose-Einstein distribution function for the quasiparticles will be important. Clearly
this is the regime in which a Boltzmann approximation could be unreliable.

These corrections originate in off-shell effects that will depend on the particular spectral
density of the bath and the coupling between the particle of the bath. We will quantify the
corrections for a particular choice of J(ω) in a following section.

Moreover, the asymptotic value of the particle number does not depend on the initial con-
dition of the particle; e.g. initial expectation values of position and momentum, temperature
or occupation number.

B. Isolated poles (ωp < ωth)

In this case the asymptotic time dependence of the function g(t) is completely determined
by the isolated pole below the bath continuum and the function “rings” with this frequency
and with asymptotic amplitude determined by the wave function renormalization Z given
by (3.26). The asymptotic behavior of the particle occupation number defined at a reference
frequency Ω is now given by

〈n(∞)〉 = −1

2
+ R(∞) +

Z2 sin2(ωpt)

2 Ωω2
p

[

p2
i Ω

2 + (Ω4 + ω4
p)σ + ω4

pq
2
i

]

+
piqiZ

2

2

(

Ω

ωp

− ωp

Ω

)

sin(2ωpt) +
Z2 cos2(ωpt)

2

(

p2
i

Ω
+ 2Ωσ + Ωq2

i

)

, (5.8)

where R(∞) is the limit value of R(t). For Ω = ωp, i.e. the position of the dressed particle
pole, the asymptotic value of the occupation number obtains the simple form

〈n(∞)〉 = −1

2
+ R(∞) + Z2

[

n(0) +
1

2

]

+
Z2

2Ω

[

p2
i + Ω2q2

i

]

. (5.9)

The last term can be identified as the contribution from the expectation values of
p(0) ; q(0) (pi ; qi respectively) in the initial density matrix.

Unlike the case in which the pole is in the continuum, the asymptotic value of the
particle occupation does depend on how the particle was prepared initially since expression
(5.9) depends on pi, qi and n(0).

In this case, R(∞) has contributions from both the continuum cut and the isolated pole
below the continuum.

In order to compare the results to those obtained from an approximate quantum kinetic
equation obtained via a perturbative expansion in the next section, it is useful to obtain an
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expression for R(∞) up to first order in J(ω). The expression for R(∞) (5.2) is proportional
to the spectral density S(ω) given by (3.22). When the pole is below the continuum, the con-
tribution from the cut is proportional to J(ω) and perturbatively small when J(ω) is small.
Furthermore the continuum contribution dephases rapidly at long times, and asymptotically
the relevant contribution to g(t) arises from the isolated pole. After some straightforward
algebra we find for Ω = ωp that at long times

|k(ω, t)|2 + Ω|h(ω, t)|2 = Z2

{

1 − cos(ω+t)

ω2
+

+
1 − cos(ω−t)

ω2
−

}

(5.10)

with

ω± ≡ Ω ± ω (5.11)

and to lowest order in J(ω), the asymptotic contribution R(∞) is given by

R(∞) =
Z2

2πΩ

∫

dω J(ω) [1 + 2N(ω)]

(

1

ω2
+

+
1

ω2
−

)

+ O
(

J2
)

,

which for easier comparison with the results from kinetics, can be written in the following
form

R(∞) ≈ 1

2
(1 − Z2) +

Z2

πΩ

∫

dω J(ω)

{

1 + N(ω)

ω2
+

+
N(ω)

ω2
−

}

+ O
(

J2
)

,

where the term (1 − Z2) ≈ 2(1 − Z) and we have used the sum rule (3.27) to lowest order.
Setting pi = qi = 0 in eq.(5.9), the asymptotic occupation number becomes

〈n(∞)〉 = Z2

[

n(0) +
1

πΩ

∫

dωJ(ω)

{

1 + N(ω)

ω2
+

+
N(ω)

ω2
−

}]

+ O
(

J2
)

. (5.12)

We have purposedly kept Z in the above expression to compare it to the results from the
quantum kinetics approximation to be obtained later.

Clearly this result depends on the initial distribution of the particle and the details of
the spectral density of the bath, leading to the conclusion that in the case in which the
particle pole is real (below threshold), the particle does not thermalize with the bath.

VI. COLLECTIVE NORMAL MODES AND QUASIPARTICLES

In a many body problem, the poles of the exact two particle Green’s functions are
identified with the collective modes. In general the poles are complex resulting in the
damping of the collective excitations. We can make contact with this many body concept
by studying the normal modes of the total Hamiltonian for the particle-bath system under
consideration.

Since the Hamiltonian is quadratic, it can be diagonalized by a canonical transformation
in terms of the normal modes. In order to establish a correspondence with the continuum
distribution of bath oscillators it is convenient to write the Hamiltonian in the continuum
form
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H =
1

2
(p2 + ω2

0 q2) +
1

2

∫ ωc

ωth

dω
[

P 2(ω) + ω2 Q2(ω)
]

+ q
∫ ωc

ωth

dω C(ω) Q(ω)

J(ω) = π
C2(ω)

2ω
.

The Hamiltonian of this rather simple model can be diagonalized by finding the normal
modes. Let us write the linear change coordinates and momenta (canonical transformation)
to the normal modes as [26,32]

q = Sλ α(λ)Q(λ) ; p = Sλ α(λ)P(λ) (6.1)

Q(ω) = Sλ β(ω, λ)Q(λ) ; P (ω) = Sλ β(ω, λ)P(λ), (6.2)

where the symbol Sλ stands for the sum over the discrete and integral over the continuum
normal mode eigenvalues λ that render the Hamiltonian in diagonal form

H =
1

2
Sλ

[

P2(λ) + λ2Q2(λ)
]

.

The vectors V (λ) = (α(λ), β(ω, λ)) obey the normal mode eigenvalue equation which in
components reads

ω2
0 α(λ) +

∫ ωc

ωth

dω C(ω) β(ω, λ) = λ2 α(λ) (6.3)

C(ω) α(λ) + ω2β(ω, λ) = λ2 β(ω, λ) (6.4)

and the λ′s are the exact eigenenergies of the Hamiltonian.
Solving for β(ω, λ) in terms of α(λ) in eq.(6.4) and inserting the solution back into (6.3)

we find the solution for the coefficients and the secular equation for the eigenvalues to be
given by

β(ω, λ) =
C(ω) α(λ)

(λ − iǫ)2 − ω2
+ B δ(λ − ω)

[

λ2 − ω2
0 −

2

π

∫ ωc

ωth

dω
ω J(ω)

(λ − iǫ)2 − ω2

]

α(λ) = B C(λ) ,

where we used ‘retarded’ boundary conditions (with the iǫ prescription) to establish contact
with the previous results, and B is determined by normalizing the eigenstates.

There are two distinct possibilities: I) an isolated pole below the continuum threshold
of the bath corresponding to a dressed stable particle, II) a continuum of states and a
quasiparticle pole in the unphysical Riemann sheet (resonance).

I) Isolated poles: The condition for isolated poles below the bath continuum requires
setting B = 0 since the spectrum of the bath has no support below threshold. The position
of the pole is found from the secular equation

ω2
p − ω2

0 −
2

π

∫ ωc

ωth

dω
ω J(ω)

ω2
p − ω2

= 0 .

This expression is identified as the condition for isolated poles in the Laplace transform g̃(s)
(see eq.(3.15)) for s = iωp. The value of α(ωp) is determined from normalization and we
find

α(ωp) =
√

Z
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with Z the wave function renormalization given by eqs.(3.18) and (3.26). Normalization of
the vectors is equivalent to the sum rule (3.27).

II) Continuum states:
For the continuum states we take B = 1 so that Q(λ) → Q(ω) when C(ω) → 0 and we

find the coefficients

α(λ) =
C(λ)

(λ − iǫ)2 − ω2
0 − 2

π

∫ ωc

ωth
dω ω J(ω)

(λ−iǫ)2−ω2

(6.5)

β(ω, λ) = δ(λ − ω) +
C(ω) α(λ)

(λ − iǫ)2 − ω2
. (6.6)

In this case the normalization results in the sum rule given by eq.(3.23).
Because of our choice of boundary conditions, the coefficients are complex and the re-

sulting new coordinates are not Hermitian. This can be remedied by absorbing the phases
by a trivial canonical transformation and defining the coefficients α(λ) ; β(λ) in terms of
their absolute values and the Q(λ) ; P(λ) to be real. This phase carries the information
of the boundary conditions (the iǫ prescription) and since it is removed by a canonical
transformation the results are independent of these.

Let us consider the case of an isolated pole below the threshold of the bath continuum
at λ = ωp. This state is the one that evolves from the bare particle degree of freedom upon
adiabatically switching-on the system-bath couplings Ck and is identified with the position
of the isolated pole in the Laplace transform of the function g(t) given by (3.15).

Separating the contribution from the isolated pole we write

q(t) =
√

ZQ0(t) + Qcont(t)

p(t) =
√

ZP0(t) + Pcont(t) ,

where the operators Qcont ; Pcont create excitations in the continuum of the bath out of
the exact ground state. Writing Q0 ; P0 in terms of creation and annihilation operators of
the exact eigenstates, we see that asymptotically long times the operators q(t) ; p(t) create
an exact one dressed particle state out of the exact vacuum. In the limit of asymptotically
long times and invoking the Riemann-Lebesgue lemma

q(t)|0 > →
√

Z√
2ωp

eiωpt |1p >,

where |0 > is the exact ground state and the contribution from the continuum states averages
to zero at long times by the dephasing between modes.

The operator

A†
q(t) =

1
√

2ωpZ
[ωp q(t) + ip(t)] (6.7)

asymptotically at long times creates a dressed particle state with unit residue out of the exact
vacuum. At any finite time the state created by this operator is not an eigenstate of the full
Hamiltonian but has overlap with states in the continuum [35]. We associate the operator
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(6.7) with dressed particles in the case of isolated poles or quasiparticles for resonances, in
contrast to the normal (collective) modes of the system that are exact eigenstates.

Although a priori one would be tempted to define the dressed particle as the normal
mode of frequency ωp associated with the creation and annihilation operators obtained from
the normal mode described by Q0 ; P0, these are of little use: these operators represent
linear combinations of the particle and the degrees of freedom of the bath. Obviously the
number operator associated with this normal mode is constant in time. The interpolating
operator (6.7) is the natural candidate for counting quasiparticles [35].

In an experimental situation such as for example an electron in a metal, one would
like to write down an evolution equation for the distribution function that describes the
particle dressed by the medium. The interpretation of the quasiparticle creation operator is
consistent with this physical situation since the added particle will move in the bath being
dressed by the interaction with the medium, the resulting quasiparticle will have a new
dispersion relation (given here by ωp) and in general a width, and the probability associated
with this quasiparticle pole will be reduced by the overlap with the states of the bath. This
quasiparticle is not a stationary state because it overlaps with the collective modes and its
time evolution involves dephasing.

In the case in which the pole at ωp has a value larger than the threshold for the bath
oscillators, it has moved into the second (unphysical) Riemann sheet upon adiabatically
switching-on the interaction and is no longer part of the eigenspectrum of the Hamiltonian.
In this case it has become an unstable state and ωp will have a small negative imaginary
part given by Γ [see eq.(3.24)]. In this case the overlap with the continuum results in an
almost exponential decay of the quasiparticle distribution after the short formation time of
the quasiparticle.

We then see that the interpolating number operator

n̂quasi(t) =
1

2ωpZ

[

p2(t) + ω2
pq

2(t)
]

− 1

2Z
(6.8)

can be interpreted as either the dressed particle distribution function in the case of an isolated
pole below the continuum of the bath or the quasiparticle distribution function in the case
of a resonance. Besides setting the reference frequency λ ≡ ωp in eq.(2.2) the wavefunction
renormalization factor Z accounts for the strength of the particle or quasiparticle pole. The
importance of wave function renormalization has been highlighted within the context of high
field transport in semiconductors [36]

Interpretation of results:
This analysis in terms of normal modes reveals several features of the exact solutions

obtained in the previous sections.

• Thermalization of quasiparticles (resonances): in the case in which the quasi-
particle pole is above threshold, the asymptotic value of the quasiparticle distribution
given by eqs.(5.1)-(5.2) is a consequence of thermalization. Indeed by using the ex-
pansion of q ; p in terms of the normal mode coordinates and momenta given by
eqs.(6.1)-(6.2) with the coefficients |α(λ)| and real P(λ); ;Q(λ) it is straightforward
to prove that

< n̂quasi(∞) >= Tr
[

n̂quasi(0) e−βH
]

=
1

Z

[

R(∞) − 1

2

]

(6.9)
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with n̂quasi(0) the quasiparticle number operator (6.8) at the initial time t = 0. This
is a remarkable result: the density matrix, which initially was of a factorized form
for particle and bath at different temperatures has evolved in time to the equilibrium

density matrix for the total system at the temperature of the bath. However the
distribution of quasiparticles is not given by the Bose-Einstein form. Furthermore,
the contribution to n̂quasi(∞) that does not vanish as T → 0 can be interpreted as
a zero point contribution from the resonance. In the case in which the quasiparticle
becomes a narrow resonance we see from eqs.(5.5) and (6.8) that

< nquasi(∞) >= N(ωp) +
1

2
(1 − 1

Z
) (6.10)

and the number of quasiparticles departs from a Bose-Einstein distribution at the
temperature of the bath with the departure determined by the off-shell effects that
result in Z 6= 1 through the sum rules. The last term, identified above with the zero
point contribution is interpreted as the normalization borrowed from the continuum
by the quasiparticle. Although in this simple case Z does not depend on temperature
and the last term in (6.10) can be subtracted out as a redefinition of the quasiparticle
vacuum, in a general quantum many body theory, the wave function renormalization
will be medium dependent and such subtraction would be unjustified.

• Non-Thermalization of stable particles: In the case in which the particle pole
is below threshold the asymptotic oscillations in the expression (5.8) for Ω 6= ωp are
a consequence of the interference between the state of arbitrary frequency Ω and the
normal mode with frequency ωp. These oscillations disappear when the reference
frequency (Ω) is chosen to be the normal mode pole frequency (ωp) which is also
the particle frequency, this fact has already been noticed within a different context
[14]. The factor Z2 in eq.(5.9) has the following origin: asymptotically at long times
q(t) →

√
ZQ0 ; p(t) →

√
ZP0 in the sense of matrix elements. But the Q0 ; P0 create

particle states out of bare states with amplitude
√

Z, therefore one of the factors Z in
eq.(5.9) arises from the asymptotic (weak) limit on the operators, and another factor
Z arises because the calculation of eq.(5.9) was performed in terms of the bare states
overlap with the particle states given by the wave function renormalization. Using the
expansion in terms of normal modes we find that < n̂quasi(∞) > given by eq.(6.8) does
not coincide with

Tr
[

n̂quasi(0) e−βH
]

unlike the previous case of a resonance.

VII. KINETICS

Having provided an analysis of the exact evolution of the distribution function and dis-
tinguished between that of renormalized, stable particles and quasiparticles (resonances),
we now proceed to obtain kinetic equations in several stages of approximation to compare
with the exact results. Kinetic equations are obtained by truncating the hierarchy of equa-
tions of motion for the higher order correlation functions under certain assumptions. The
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typical assumptions are those of slow relaxation as compared to the microscopic time and
length scales and rely on a separation of scales. To warrant this separation between scales
clearly a perturbative parameter must be invoked and the resulting kinetic equations pro-
vide a resummation of the perturbative expansion. Different type of approximations result
in different resummation schemes.

A. Boltzmann Equation

The simplest kinetic equation to describe the approach to equilibrium is the Boltzmann
equation, which is obtained by writing a gain minus loss balance equation in which energy
is conserved and using Fermi’s Golden Rule. Writing q(t) and Qk(t) in terms of creation
and annihilation operators, we identify the only terms that can contribute by energy con-
servation: the ‘gain’ term in which one quanta of the system’s oscillator is created and one
quanta of the oscillator with label k is annihilated, minus the ‘loss’ term in which a quanta
of the system’s oscillator is annihilated and a quanta of the oscillator of label k in the bath
is created. The first term has probability given by

gain =
C2

k

4ω0 ωk

(1 + n)Nk.

The second term has a probability

loss =
C2

k

4ω0 ωk

(1 + Nk) n.

Thus using Fermi’s Golden Rule we find the usual Boltzmann equation

〈ṅB(t)〉 = (2π)
∑

k

C2
k

4ω0ωk

[(1 + n(t))Nk − (1 + Nk)n(t)] δ(ωk − ω0) →
∫

dω
J(ω)

ω0
[(1 + n(t))N(ω) − (1 + N(ω))n(t)] δ(ω − ω0), (7.1)

where we have assumed that the bath remains in thermal equilibrium with constant distri-
bution functions. The solution is clearly

〈nB(t)〉 = N(ω0) + [n(0) − N(ω0)] e
−2ΓB t ; ΓB =

J(ω0)

2ω0
=

ΣI(ω0)

2ω0
, (7.2)

where we recognize the lowest order (Born approximation) to the decay rate which is given
by eqs.(3.19) and (3.24). Obviously the Boltzmann equation predicts no relaxation in the
case in which the pole is below the continuum threshold since in this case J(ω0) = 0.

Even when the bare frequency is in the continuum of the bath, the Boltzmann approxi-
mation predicts no relaxation if n(0) = N(ω0) as the gain and loss processes exactly balance.

As we will see explicitly numerically below the exact solution shows a non-trivial time
dependence in this case because the bare particle is dressed by the medium and the asymp-
totic equilibrium distribution function reveals off-shell effects as discussed in the previous
section.
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B. Quantum Kinetic Equation:

The quantum kinetic equation is obtained by taking the expectation value of the number
operator using the Heisenberg equations of motion and truncating the exact equations of
motion within a particular approximation.

Since we want to obtain the kinetic equation for the relaxation of the distribution function
of particles with frequency Ω (for quasiparticles this is the pole frequency of the propagator,
for bare particles it is simply ω0) it is convenient to write the total Hamiltonian in terms of
this frequency adding a counterterm of the form

Hct =
δω2

2
q2(t) ; δω2 = ω2

0 − Ω2 .

As usual the counterterm is chosen appropriately in perturbation theory to cancel the con-
tributions recognized as those arising from a shift in the frequency.

Taking the derivative of eq.(2.2) and using the equations of motion we obtain

ṅ(t) = − 1

Ω

{

∑

k

Ck Qk(t)q̇(t) +
δω2

2
[q(t) q̇(t) + q̇(t) q(t)]

}

. (7.3)

The expectation value of the time derivative of the occupation number is calculated by
multiplying eq.(7.3) by ρ(0) and taking the trace

〈ṅ(t)〉 = − 1

Ω

d

dt′

{

∑

k

Ck

〈

q+(t′) Q−
k (t)

〉

+
δω2

2
〈q(t)q(t′) + q(t′)q(t)〉

}∣

∣

∣

∣

∣

t′=t

, (7.4)

where
〈

q+(t′) Q−
k (t)

〉

= Tr [q(t′)ρ(0)Qk(t)] .

We need to evaluate the non-equilibrium matrix element
〈

q+(t′) Q−
k (t)

〉

. This can be
achieved by treating the interaction term in perturbation theory. The zeroth order term
in the perturbative series does not contribute because the initial density matrix commutes
with the number operator at the initial time.

A simple diagrammatic analysis of the perturbative series reveals that the kinetic equa-
tion can be written exactly as

〈ṅ(t)〉 = − 1

Ω

∑

k

Ck

d

dt′

{[
∫ t

0
dt′′ (Σ<

k (t, t′′)G>(t′′, t′) − Σ>
k (t, t′′)G<(t′′, t′))

]

+

δω2

2
(G>(t, t′) + G<(t, t′))

}
∣

∣

∣

∣

∣

t′=t

,

where G<,> are the exact Green’s functions for the system, defined similarly to those of the
bath eq.(3.1) and Σ<,>

k are the irreducible self-energy components, again defined similarly
to eq.(3.1).

To first order in the interaction we use the free-field propagators and the lowest order con-
tribution to the self-energy. It is straightforward to show that the counterterm contribution
vanishes to this order and eq.(7.4) becomes
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〈ṅ(t)〉 =
i

Ω

∑

k

C2
k

d

dt′

[
∫ ∞

0
dt′′

(〈

q+(t′) q+(t′′)
〉 〈

Q−
k (t) Q+

k (t′′)
〉

−
〈

q+(t′) q−(t′′)
〉 〈

Q−
k (t) Q−

k (t′′)
〉)]

t′=t
. (7.5)

Substituting the non-equilibrium Green’s functions from eq.(3.1) in the right hand side of
eq.(7.5), taking the derivative with respect to t′ and arranging terms, we obtain

〈ṅ(t)〉 =
1

πΩ

∫ t

0
dt′
∫

dωJ(ω) {[1 + n(0) + N(ω)] cos [(Ω + ω)(t− t′)]

+ [N(ω) − n(0)] cos [(Ω − ω)(t− t′)]} , (7.6)

where n(0) is the distribution of quanta for the particle at the initial time and N(ω) are
the Bose-Einstein distributions of the bath which will be taken to be constant and given by
eq.(3.2).

We now propose a scheme that provides a resummation of the perturbative series by
replacing the initial distribution n(0) by self-consistently updating the distribution inside
the integral in eq.(7.6) by replacing n(0) → n(t′). It will be shown explicitly below that
this prescription leads to a Dyson summation of particular Feynman diagrams and the case
where n is constant is understood as the lowest order term in this expansion. Within non-
relativistic many-body quantum kinetics, this approximation is known as the generalized
Kadanoff-Baym ansatz [17]- [22]. The validity of this approximation in the weak coupling
limit is confirmed by comparing the resulting evolution of the distribution function to the
exact result obtained in the previous sections as it will be seen below in detail.

The quantum kinetic equation is then given by

〈ṅqk(t)〉 =
1

πΩ

∫ t

0
dt′
∫

dω J(ω) {[1 + n(t′) + N(ω)] cos [(Ω + ω)(t− t′)]

+ [N(ω) − n(t′)] cos [(Ω − ω)(t − t′)]} . (7.7)

The resulting linear kinetic equation, eq.(7.7), can now be solved via Laplace transforms.
The Laplace transform of < nqk(t) > is given by

ñqk(s) =
n(0) + 1

πΩ

∫ ωc

ωth
dωJ(ω)

{

(1+N(ω))
s

s
s2+ω2

+

+ N(ω)
s

s
s2+ω2

−

}

s − 1
πΩ

∫ ωc

ωth
dωJ(ω)

{

s
s2+ω2

+

− s
s2+ω2

−

} , (7.8)

where n(0) is the initial occupation number of the particle and ω± are given by eq.(5.11).
The dynamics of the occupation number of the particle is obtained by taking the inverse
Laplace transform along the Bromwich contour. The analytic structure of ñqk(s) consists
of cuts along the imaginary axis in the s-plane and poles. For the pole contributions, we
distinguish two cases :
Case I : Poles in the continuum. In this case there are two poles: 1) a pole where the
denominator of eq.(7.8) vanishes, i.e.

sp −
1

πΩ

∫

dωJ(ω)

{

sp

s2
p + ω2

+

− sp

s2
p + ω2

−

}

= 0.
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For weak coupling, one can solve for the pole, sp, in perturbation theory and one can show
that the pole is given by (up to first order in J(ω))

sp = −J(Ω)

Ω
= −2Γ,

where we used the identity

lim
s→0

s

s2 + ω2
±

= πδ(ω±), (7.9)

and Γ is given by eq.(5.4). The contribution from this pole vanishes exponentially for long
times. 2) There is a second pole at s = 0 and the residue of this pole, using eq. (7.9), is
N(Ω). The average occupation number is then given by the contribution of the two poles
and the cut

〈n(t)〉 = N(Ω) + (residue at sp) e−2Γ t + contribution from the cut .

Asymptotically the contribution of the cut falls off as a power law [34]. Therefore the
contribution from the last two terms vanish and the particle occupation number approaches
the equilibrium occupation of the bath with frequency Ω. Comparing the above result for
Ω = ωp with the one obtained exactly in the small coupling regime, eq. (5.5), we see that
they differ by a factor of order J(ω) which can be compensated for by considering higher
orders in deriving the kinetic equation. Thus we see that for weak coupling (ωp ≈ ω0), the
solution of the quantum kinetic equation approaches that of the Boltzmann approximation
given by eq.(7.2).
Case II : Poles below the continuum. Since J(ωp) vanishes for poles below the continuum,
there is only one pole at s = 0. The average occupation number is given by the sum of the
residue of the pole and the cut contribution. At long times the cut contribution vanishes at
least as a power law [34] and the asymptotic average occupation number is given by

〈nqk(∞)〉 =
n(0) + 1

πΩ

∫ ωc

ωth
dω J(ω)

{

1+N(ω)
ω2

+

+ N(ω)
ω2
−

}

1 − 1
πΩ

∫ ωc

ωth
dω J(ω)

{

1
ω2

+

− 1
ω2
−

} .

The denominator of the above equation can be simplified considerably becoming simply Z−2

to this order. The above equation is now written as

〈nqk(∞)〉 = Z2

[

n(0) +
1

πΩ

∫ ωc

ωth

dω J(ω)

{

1 + N(ω)

ω2
+

+
N(ω)

ω2
−

}]

.

Comparing the above result with the one obtained exactly in the small coupling regime,
eq.(5.12), we see that the two results coincide.

Obviously this quantum kinetic equation includes contributions from intermediate states
that do not conserve energy and therefore provide off-shell corrections. For the case in
which the quasiparticle pole is in the continuum, we see that asymptotically at long times
the distribution becomes similar to that obtained in the Boltzmann approximation with the
same relaxation rate. However at early times the solution of the quantum kinetic equation
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differs appreciably from the Boltzmann solution in that the relaxation rate vanishes at the
initial time, whereas it is a constant for Boltzmann. The vanishing of the relaxation rate
at the initial time is a consequence of the fact that the initial density matrix is diagonal in
the number representation, thus whereas the quantum kinetic equation describes correctly
the initial evolution, the Boltzmann equation has coarse grained over these time scales and
misses the early time behavior.

This is important experimentally if the resolution in time of the measurement allows
to study time scales that reveal features of the initial preparation. Such is the case in
femtosecond resolved studies of relaxation of hot carriers as described in the introduction.

C. Markovian approximation:

If the particle occupation number varies on time scales larger than the memory of the
kernel in the kinetic equation, a Markovian approximation may be reasonable. In this
approximation, the particle occupation number n(t′) in eq.(7.7) is replaced by n(t) and
taken outside the integral. This approximation would be justified in a weak coupling limit,
in this case when the spectral density of the bath J(ω) includes a small coupling (as it will be
specified in the next section) η. The rational behind this approximation is the realization of
multi-time scales: a microscopic or short time scale given by t ≈ 1/ωp and another relaxation
or long time scale t1 ≈ ηt.

Thus in the Markovian approximation, eq.(7.7) becomes

〈ṅ(t)〉 =
1

πΩ

∫

dωJ(ω)

{

(1 + N(ω)) sin(ω+t)

ω+

+
N(ω) sin(ω−t)

ω−

}

+
n(t)

πΩ

∫

dωJ(ω)

{

sin(ω+t)

ω+
− sin(ω−t)

ω−

}

. (7.10)

A computational advantage of this equation is that it provides a local update procedure.
A connection with the Boltzmann approximation is made with a second stage of approxi-
mation, known in the Boltzmann literature as the ‘completed collision approximation’ and
consists in taking the limit t → ∞ in the arguments of the sine functions in eq.(7.10). This
approximation enforeces strict energy conservation. This can be understood by using the
limiting distribution

limt→∞

sin[ω±t]

ω±

= πδ(ω±)

which is used in the derivation of Fermi’s Golden Rule. Noticing that only ω− could vanish
leading to the Boltzmann expression

〈ṅ(t)〉 =
J(Ω)

Ω
[N(Ω) − n(t)]

which coincides with the Boltzmann equation obtained above [eq.(7.1)] within the limit of
validity of the perturbative expansion, since perturbatively Ω ≈ ω0 if Ω is taken as the
position of the quasiparticle pole.
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VIII. NUMERICAL ANALYSIS

In order to compare the particle number relaxation n(t) between the exact results eq.(3.9)
and the various approximations to the kinetic description eq.(7.7), Boltzmann and Marko-
vian, we have solved numerically for a particular choice of the spectral density of the bath.

We will choose the following model for J(ω)

J(ω) = η (ω − ωth) θ(ω − ωth) θ(ωc − ω). (8.1)

This is a generalization of the Ohmic bath in which J(ω) vanishes for frequencies below a
threshold frequency ωth and above a cutoff frequency ωc, and η is a coupling parameter.
This is the simplest spectral density of the bath that allows us to model important features
of relevant microscopic models and illuminates the main aspects of relaxational dynamics.

This form of the spectral density for the bath has been motivated by previous studies of
decoherence and dissipation in similar model theories [26]- [32]. It is the simplest realization
that allows us to vary parameters and investigate the different regimes for the phenomena
discussed in the previous section. By varying the coupling η and the value of the bare (or
renormalized) frequency we can test the different scenarios.

For the case of the quasiparticle pole embedded in the continuum the dimensionless
parameter that determines the separation of time scales is given for the spectral density
(8.1) by

Γ

ωp

∼= η

2ω2
p

(ωp − ωth) .

When this ratio is << 1 the resonance is rather narrow and there are many oscillations before
the decay, the time scales are widely separated. In the other limit when this ratio ≈ 1 the
particle is strongly coupled to the bath, resulting in a wide resonance and a potential for
large off-shell effects including effects related to the proximity of the peak of the resonance
to the threshold.

The dynamical function g(t) satisfies eq. (3.7). In terms of the renormalized frequency
ωR given by eq.(3.20), g(t) can be shown to satisfy the following equation

g̈(t) + ω2
Rg(t) +

2

π

∫ t

0
dt′
∫

dω
J(ω)

ω
cos [ω(t − t′)] ġ(t′) = 0 ; g(0) = 0 ; ġ(0) = 1.

We scale our results to an arbitrary unit of frequency and refer all dimensionful quantities
to this unit since the important physical quantities are dimensionless ratios (such as ω/T
etc).

Now we study different scenarios in detail.
Figure 2 shows the case for which the dressed particle pole is below threshold. In this

case the Boltzmann equation predicts that no relaxation occurs because the imaginary part
of the self-energy evaluated on shell (damping rate) vanishes. The exact solution, and
the quantum kinetic approximation along with the Markovian limit all predict non-trivial
relaxation, and for this weak coupling case all agree to within few percent. Obviously in
this case the relaxation is solely due to off-shell effects since the dissipative effects associated
with processes that conserve energy (on-shell) vanish. The insert of the figure shows the
dynamics of dressing of the particle and the time scales predicted by the exact result are
well reproduced by both the quantum kinetic equation and its Markovian approximation.
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In contrast, fig.3 shows the case for which the quasiparticle pole is in the continuum
but with a narrow width Γ/ωp ≈ 0.02. The bath temperature is fixed T = 100 and the
initial temperature of the particle (T0) is varied. We notice that in the case in which the
temperature of the bath and that of the bare particle are the same, the Boltzmann equation
predicts no relaxation because the gain and loss processes balance exactly, this is the straight
line in the graph for bare particle temperature T0 = 100. The exact solution as well as the
kinetic and Markovian approximation predict relaxation, the kinetic and the Markovian
approximations are very close to the exact expression. Analytically we know that the exact,
Markovian and kinetic will asymptotically approach the Boltzmann result (with very small
corrections) in this very narrow width case. Obviously the time scales for relaxation and
the early time dynamics are features not reproduced by the Boltzmann equation and clearly
a result of off shell effects, since all of the energy conserving detailed balance processes are
contemplated by the Boltzmann equation.

Figure 4 compares two situations: the left figures correspond to the case of a pole just
slightly below (dressed particle) and the right figures just slightly above threshold (quasi-
particle). This case provides for strong renormalization effects because the wave function
renormalization departs significantly from one. The left figure for ġ(t) depicts clearly the
dressing time of the particle, with ġ(0) = 1 we see that after a short time the asymptotic
value ġ(t) ≈ Z cos(ωpt) is achieved. This figure thus reveals two time scales, one associated
with the oscillation scale of the dressed particle 1/ωp and the other associated with the
decay to the asymptotic form, this time scale determines the dressing time of the particle
and for the case under consideration corresponds to just a few oscillations. This dressing
time scale clearly depends on the details of the spectral density since it determines the early
time dynamics after the preparation of the initial state. The right figure for ġ(t) presents
three different time scales: initially there is the time scale of formation of the quasiparticle,
very similar to the left figure, the time scale associated with the quasiparticle pole ≈ 1/ωp

and finally the time scale associated with the exponential decay. The formation time scale
and that of exponential decay can only be resolved in the narrow width approximation, in
this particular example Γ/ωp ≈ 0.005 and the time scales associated with the quasiparticle
formation from the initial state and exponential relaxation can be resolved. These are clearly
displayed in fig.5 where the logarithm of the maxima of ġ(t) is plotted versus time. In fig.6
we show the expectation value of the number operator eq.(2.2) for Ω = ωp for the same
values of the parameters as in fig.4 (left figure corresponds to pole below threshold and right
figure to the pole above threshold) and equal particle and bath temperature T0 = T = 10.
Whereas the Boltzmann equation predicts again no relaxation, in the left figure because the
damping rate vanishes and in the right figure because the on-shell gain and loss processes
balance each other, the exact and quantum kinetics description of relaxation both predict
non trivial evolution of the dressed particle and quasiparticle distribution functions respec-
tively. The left figure shows that whereas the quantum kinetic and Markovian evolution
are not too different from the exact, asymptotically all of them depart significantly from
Boltzmann. The early time dynamics predicted by the Markovian and quantum kinetics are
very close to the exact expression. In the right figure, corresponding to a narrow resonance
we see that asymptotically the quantum kinetic and Markovian evolution asymptotically
approach the Boltzmann result but obviously the early and intermediate time dynamics is
remarkably different. Furthermore the exact result reaches an asymptotic value that is very
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different from Boltzmann, as a result of the strong quasiparticle renormalization effects, with
Z departing significantly from one [see fig. 4]. Despite the fact that the resonance is rather
narrow, its proximity to threshold results in strong off-shell effects.

Figure 7 is perhaps one of the most illuminating. The parameters are the same as for the
right part of fig.4, i.e. with the quasiparticle pole in the continuum and close to threshold,
the bath temperature is T = 10 and the particle is initially at zero temperature. In the left
figure we plot the Boltzmann, exact, quantum kinetic and Markovian evolutions respectively
for the expectation value of the number operator (2.2) for Ω = ωp, whereas the right figure
corresponds to dividing by Z the results of the exact, quantum kinetics and Markovian
evolutions to make contact with the quasiparticle number operator (6.8). This figure clearly
shows that the Boltzmann approximation coarse grains over the early time behavior and
completely misses the formation time scales and the early details of relaxation.

Finally, fig.8 presents the evolution of the quasiparticle distribution for a case of a strong
coupling regime resulting in a wide resonance: η = 5 ; ωth = 5.0 ; ωc = 40 ; ωp =
9.58 ; Z = 0.982 for a bath temperature T = 200 and zero initial particle temperature with
Γ/ωp ≈ 0.1. The insert in the figure displays the early time behavior. We see in this figure
that whereas the early time behavior is similar for the exact and approximate evolutions,
which is a consequence of zero initial temperature for the particle, at times of the order of the
relaxation time there is a dramatic departure. Furthermore the Boltzmann approximation
predicts a very different early time evolution because it coarse grains over the formation
time of the quasiparticle.

Whereas the quantum kinetic evolution and its Markovian approximation track very
closely the Boltzmann, the exact evolution is approximately 15% smaller resulting in a
smaller population of quasiparticles asymptotically. The departures in the exact result are
a consequence of off-shell effects associated with a large width of the quasiparticle.

IX. CONCLUSIONS AND IMPLICATIONS

The goal of this article is to study the dynamics of thermalization including off-shell
effects that are not incorporated in a Boltzmann description of kinetics. In particular the
focus is to assess the validity of the Boltzmann approximation as well as non-Markovian and
Markovian quantum kinetic descriptions of relaxation and thermalization in a model that
allows an exact treatment.

Although the model treated in this article allows an exact solution and therefore provides
an arena to test the regime of validity of several approximate descriptions of kinetics and
compare to an exact result, it is obviously not a full quantum many body theory. Specific
many theory models used to obtain a microscopic description of thermalization and relax-
ation will certainly contain details that are not captured by the model investigated here.
However, from the exhaustive analysis in this article we believe that some of the results
obtained here are fairly robust and trascend any particular model. These are the following:

• Boltzmann vs. quantum kinetics: A necessary criterion for the validity of a
Boltzmann approach is that there is a clear and wide separation of time scales between
the microscopic time scales and the time scales of relaxation. This is typically the
situation in which quasiparticles correspond to very narrow resonances in the spectral
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functions and their lifetime is much longer than the typical microscopic scales. If
perturbation theory is applicable and the quasiparticle resonance is narrow and its
position is far away from thresholds, then a Boltzmann description is likely to be
reliable for time scales longer than the formation time of the quasiparticle. When
there is competition of time scales or the early stages are experimentally accesible a
full quantum kinetic equation must be obtained.

• Microscopic time scales: In order to determine the microscopic time scales the first
step is to determine the position of the resonances or quasiparticles, i.e. the quasi-
particle pole including the medium effects. The bare particle poles do not determine
the microscopic time scales. Obviously for weakly interacting theories the position of
the bare and quasiparticle poles will be very close and the microscopic time scales are
similar.

• Relaxational time scales: An estimate of the relaxational time scale is determined
by the width of the resonance, Γ, a wide separation of time scales that would provide a
necessary condition for the validity of a Boltzmann approximation would require that
Γ/ωp << 1.

• Thresholds: Although a wide separation of time scales is a necessary condition for
the validity of a Boltzmann approach, it is not sufficient. In particular when the
position of the resonance is too close to threshold, there will be important corrections
to the long and short time dynamics arising from the behavior of the spectral density at
threshold. Threshold effects can lead to strong renormalization of the amplitude of the
quasiparticle pole (wave function renormalization) that results in sizable distortions of
the equilibrium distributions as compared to the free particle ones. In particular we
have seen how thermalization is achieved but with large corrections in the quasiparticle
distribution functions from the usual Bose-Einstein form. The relevance of threshold
effects can be quantified by the ratio Γ/(ωp −ωth). If this ratio is << 1 then threshold
effects will be negligible. When this ratio is O(1) these effects will be important.

• Formation times, Markovian vs. non-Markovian kinetics: The model that we
have studied allowed us to explore the concept of the formation time of a quasiparticle.
This concept is simply unavailable within a Boltzmann approach, since the Boltzmann
equation coarse grains over the formation time scales. This is clearly revealed in figures
5 and 7. Both the non-Markovian quantum kinetics and its Markovian approximation
include off-shell effects and capture the early time dynamics associated with the for-
mation of the quasiparticle. The formation time of a quasiparticle becomes relevant
if the initial state is very far from equilibrium, since in a non-linear evolution, large
initial departures can result in large corrections in the asymptotic region. It is also im-
portant if the early time dynamics is resolved experimentally as seems to be the case in
femtosecond resolved studies of hot carriers in semiconductors. An important message
learned in this work is that even in strongly coupled cases a non-Markovian quantum
kinetic description provides a very good approximation to the correct dynamics for
most of the relevant time scale. A Markovian approximation that is obtained by ex-
tracting the distribution functions from inside the non-local time integrals, but without
taking the interval of time to infinity (completed collision) offers a viable description,
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which is close to the exact evolution and that of the non-Markovian quantum kinetics
at weak and intermediate couplings. Its main advantage is computational because this
approximation provides a local update equation.
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S.P. Klevansky, A. Ogura, J. Hüfner, Annals Phys. 261, 37 (1997); S.P. Klevansky, A.
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[36] P. Lipavský, F. S. Khan and J. W. Wilkins, Phys. Rev. B43, 6665 (1991).

34

http://lanl.arXiv.org/abs/hep-ph/9801423
http://lanl.arXiv.org/abs/hep-ph/9702288
http://lanl.arXiv.org/abs/cond-mat/9612235


FIGURES

��
��
×

��
��
×

a) b)

−iωth

+iωth

−iωc

+iωc

?

?

6

6

-

�

-

�

s-plane

−iωth

+iωth

−iωc

+iωc

?

?

6

6

FIG. 1. The complex contour used to evaluate g(t) for the cases in which a) the pole is below

the threshold and b) the pole is above threshold.
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FIG. 2. The expectation value of the particle occupation number given by eq.(2.2) for Ω = ωp

for the case in which the pole is below threshold for particle temperature T0 = 200 and bath

temperature T = 100. The pole is at ωp = 1.95719 and Z = 0.95621. The numerical parameters

are η = 0.85, ωc = 45, ωth = 5 and ωR = 2.
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FIG. 3. The expectation value of the particle occupation number given by eq.(2.2) for Ω = ωp

for the case in which the pole is above threshold for particle temperatures T0 = 100 and 200

and bath temperature T = 100. The pole is at ωp = 9.83397 and Z = 0.99631. The numerical

parameters are η = 0.85, ωc = 45, ωth = 5 and ωR = 10, resulting in Γ/ωp ≈ 0.02.
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FIG. 4. The functions S(ω) and ġ(t) for the cases in which the pole is just below (left

column) and just above (right column) the threshold frequency (ωth = 5). In the left column,

ωR = 5.52, ωp = 4.98083 and Z = 0.63845 while in the right column ωR = 5.65, ωp = 5.07373 and

Z = 0.69959. The numerical parameters are η = 3.0 and ωc = 55, with Γ/ωp ≈ 0.005.

0 5 10 15 20 25 30

t

-1

-0.8

-0.6

-0.4

-0.2

0

  
.

L
n

[g
(t

)]


FIG. 5. The logarithm of the maxima of ġ(t) vs t for η = 3.0 and ωc = 55, ωth = 5,

ωR = 5.52, ωp = 4.98083 and Z = 0.63845, corresponding to the right column of fig.4.
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FIG. 6. The expectation value of the number operator eq.(2.2) for the same values of the

parameters as in figure(4)(left figure corresponds to pole below threshold and right figure to the

pole above threshold) for the case of equal particle and bath temperature T0 = T = 10. The insert

shows the early time behavior.
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FIG. 7. The expectation value of the number operator eq.(2.2) for the same values of the

parameters as for the right column in figure(4)(quasiparticle pole above threshold), η = 3.0 and

ωc = 55, ωth = 5, ωR = 5.65, ωp = 5.07373 and Z = 0.69959. The temperature of the bath is

T = 10 and zero initial particle temperature (T0 = 0), the exact, Markovian and kinetic curves

have been divided by the wave function renormalization Z in the rightmost figure. The insert in

the left figure shows the early time behavior.
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FIG. 8. The expectation value of the number operator eq.(2.2) for η = 5.0 and ωc = 40,

ωth = 5, ωp = 9.58, Z = 0.982 and bath temperature T = 200, corresponding to Γ/ωp ≈ 0.1.
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