Q1 Q0

ch Q0 A force $F=(4.0$ i $+3.0 j$) N acts on a particle
7 Q0 as it moves in the $x-y$ plane from the point ($0,10 \mathrm{~m}$)
Q0 to (10 m,0).Calculate the work done on the particle
QO by this force.
Q0
A1 10 J
A2 25 J
A3 15 J
A4 35 J
A5 20 J
Q0
Q2 Q0 A 1500 kg car accelerates uniformly from rest to $10 \mathrm{~m} / \mathrm{s}$
ch Q0 in 3.0 s . The average power delivered by the engine of
7 Q0 the car in the first 3.0 s is:
Q0
125 kW
220 kW
315 kW
410 kW
30 kW
Q0
Q3 Q0 The amount of work required to stop a moving object
ch $Q 0$ (mass $=M$, speed $=V$, kinetic energy $=K$) is equal to:
7 Q0
A1
A2
A3 M
A4 $\quad \mathrm{V}$ **2
A5 MV/2
Q0
Q4 Q0 As a particle moves from point A to point B only two
Ch QO forces act on it: one force is non-conservative and
8 Q 0 does work $=-30 \mathrm{~J}$, the other force is conservative and
0 does +50 J work. The change of the kinetic energy of 0 the particle is:
Q0
A1 20 J
A2 0 J
A3 30 J
A4 50 J
A5 80 J
Q0
Q5 Q0 A 2.2-kg block starts from rest on a rough inclined
ch QO plane that makes an angle of 25 degrees with the
8 Q0 horizontal. The coefficient of kinetic friction is 0.25.
Q0 As the block goes 2.0 m down the plane, find the change
Q0 in the mechanical energy of the block.
Q0
A1 -9.8 J
A2 9.8 J
A3 19.6 J
A4 -19.6 J
A5 0.0 J
Q0
Q6 Q0 A 2-kg block is initially moving to the right on a
ch $Q 0$ horizontal frictionless surface at a speed of $10 \mathrm{~m} / \mathrm{s}$.
8 QO It collides with a spring whose spring constant is
Q0 $100 \mathrm{~N} / \mathrm{m}$ and is brought to rest momentarily by compressing
Q0 the spring. Find the compression of the spring.
Q0

FIGURE 1

-y

FIGURE 2

FIGURE 4

FIGURE 5

FIGURE 6

Wall

```
    A1 1.4 m
    A2 2.0 m
    1.0 m
    1.5 m
    2.5 m
    Q0
Q7 Q0 A uniform plate of the shape shown in Fig. 1. The
ch QO center of mass of this plate is located in:
Q Q0
A1 Quadrant 3
A2 Quadrant 2
A3 Quadrant 1
A4 Quadrant 4
A5 at the origin O
Q8 Q0 A 4.0 kg object moving on a frictionless surface with
ch QO speed v explodes into two objects of masses 1.0 kg and
9 Q0 3.0 kg. The 1.0 kg object moves north at 5.0 m/s and the
3.0 kg object moves east at 3.0 m/s. What is v?
2.6 m/s
4.0 m/s
    1.7 m/s
    3.3 m/s
    2.0 m/s
    Two particles m1 and m2,5.0-kg each, are initially at
ch Q0 rest. External forces F1 and F2, 12 N each, are acting
9 QO on these particles as shown in Fig.2. The acceleration
of the center of mass of the two particles system is:
    1.2 j m/s**2
    1.2 i m/s**2
    0.75i m/s**2
    0.75j m/s**2
    (1.2 i + 1.2 j) m/s**2
    A 5-kg object is acted upon by a single force in the
Q10Q0 A 5-kg object is acted upon by a single force in the
ch Q0 x-direction as shown in Fig.3. Find the change of momentum
10 QO delivered to the object in 6 s.
Q0
A1 20 N.s
A2 16 N.S
A3 30 N.s
A4 10 N.s
A5 32 N.s
Q0
Q11Q0 An elastic collision is one in which:
ch Q0
10 A1
A3 Linear momentum is conserved but mass is not conserved.
A4 Only momentum is conserved.
A5
Q0
Q12Q0 Cart A of mass 3.0 kg and cart B of mass 2.0 kg approach
ch QO each other on a horizontal air track in such a way that
10 Q0 their center of mass has a speed of 4.0 m/s. They collide
and stick together. After the collision the kinetic energy
of the two carts system is:
Q0
```

```
    A1 40 J
    A2 16 J
    A3 20 J
    A4 25 J
    A5 50 j
    Q0
Q1320 A rotating wheel has an initial angular velocity Wo.
ch Q0 After 3.00 s its angular velocity is 98 rad/s.If it
11 Q0 completes 37 revolutions during this 3.00 s interval,
ch QO find Wo (assume constant angular acceleration).
Q0
A1 57.0 rad/s
88.0 rad/s
108 rad/s
41.0 rad/s
32.0 rad/s
The rigid body shown in Fig. 4 is rotated about an axis
ch Q0 perpendicular to the paper and passing through point P.
11 Q0 If M = 0.40 kg, a = 30 cm, b = 50 cm, find the work
required to increase the angular velocity of the body
from rest to 5.0 rad/s. (Neglect the force of friction,
    mass of the connecting rods and treat the particles as
    point masses).
    2.6 J
    2.9 J
    3.4 J
    1.2 J
    4.3 J
    Q0
Q15Q0 A uniform rod of mass M = 1.2 kg and length L = 0.80 m is
ch QO pivoted at point P and rests on a horizontal smooth surface
11 Q0 (Fig. 5). If a force (F =5.0 N, theta = 40 degrees) is applied
as shown, find its angular acceleration about point P.
    10 rad/s**2
    16 rad/s**2
    12 rad/s**2
    8.0 rad/s**2
    33 rad/s**2
    Q0
Q16Q0 A student in a class demonstration is sitting on a frictionless
ch QO rotating chair with his arms by the side of his body. The
12 Q0 chair-student system is rotating with an angular speed w. The
    student suddenly extends his arms horizontally. The angular
    velocity of the system:
    decreases
    increases
    remains the same
    may increase or decrease depending on the mass of the student
    may increase or decrease depending on the mass of the chair
    Q0
Q17Q0 A solid cylinder of mass M and radius R starts from rest and
ch QO rolls down an incline plane making an angle of 30 degrees
12 Q0 with the horizontal. The linear speed of its center, after
it has travelled 5 m down the incline,is:
    ( Icm = 1/2* M* R**2)
    Q0
```

```
    A1 5.7 m/s
    A2 3.8 m/s
    A3 2.5 m/s
    A4 4.9 m/s
    A5 1.3 m/s
    Q0
Q18Q0 Force F = (2.0i -3.0j) N, acts on a mass located at
ch QO r = (0.50i +2.0j) m. Find the resulting torque (in N.m) about
12 Q0 the origin.
    Q0
    A1 -5.5 k
    A2 +5.5 k
    +2.5 k
    -2.5 k
    A5 0.0 k
    Q0
Q19Q0 An 800-N man stands halfway up a 5.0-m ladder of negligible
ch Q0 weight. The base of the ladder is 3.0 m from the wall as
13 Q0 shown in Fig. 6 . Assuming that the wall-ladder contact is
    QO frictionless, the wall pushes against the ladder with a
    Q0 force of:
    Q0
    A1 300 N
    A2 100 N
    A3 200 N
    A4 150 N
    A5 380 N
    Q0
Q20Q0 A solid copper cube has an edge length of 85.5 cm. How
ch Q0 much pressure (in N/m**2) must be applied to the cube
13 Q0 to reduce the edge length to 85.0 cm? The bulk modulus
    of copper is 1.4* 10**11 N/m**2.
    2.44* 10**(9)
    4.32* 10** (10)
    8.37* 10**(9)
    6.47* 10**(9)
    5.00* 10**(8)
    Q0
```

