Q1 Q0 An empty fuel tank of a car needs 50 i iters of gasoline
QO to fill up. Find the volume of the fuel tank in m**3.
QO ($1 \mathrm{mil\mid iliter}=1$ ($\mathrm{m}^{* *} 3$)

Qo A1 A 3 A 4 A 5 QO

Q0
0.050

50000
50
500
0.50

Fig. 1 shows a graph of position versus time for a particle moving along the x axis. What is the total distance travelled by the particle in 15 s?
12.5 m
7.5 m

10 m
5.0 m
22.5 m

An object starts from rest at the origin and moves along the x-axis with a constant acceleration of $5.0 \mathrm{~m} / \mathrm{s}^{*} * 2$. Find its average velocity as it goes fromx=0myox=10m.
$5.0 \mathrm{~m} / \mathrm{s}$
$10 \mathrm{~m} / \mathrm{s}$
$17 \mathrm{~m} / \mathrm{s}$
$3.0 \mathrm{~m} / \mathrm{s}$
$8.0 \mathrm{~m} / \mathrm{s}$
00
A3-4.0 $\mathrm{m} / \mathrm{s} * * 2$
A4-9.8 $\mathrm{m} / \mathrm{s} * * 2$
A5-4.9 m/s**2
QO
It will not reach the height of 10 m .
$9.8 \mathrm{~m} / \mathrm{s}$
$12 \mathrm{~m} / \mathrm{s}$
QO
Q6 Q0 The angle between the two vectors $A=2 i+4$ jand
$B=4 i-2 j i s$ i
QO
A1 90 degrees
27 degrees
39 degrees
A4 180 degrees
0 degrees

As shown in Fig. 3, a block moves down on a 45-degree inclined plane of 2.5 m |ength, then horizontal|y for another 2.5 m , and then falls down vertically a height of 2.5 m . Find the magnitude and direction of the resultant displacement vector of the block.
QO
6.0 m and 45 degrees below horizontal axis
3. 5 m and 30 degrees below horizontal axis
6. 0 m and 30 degrees below horizontal axis

Page 1

```
        examl
    3.5 m and 45 degrees below horizontal axis
    5.5 m and 60 degrees below horizontal axis
Given the vectors A = 3 j + 6 k, B = 15 i + 21 k. Find the
magnitude of vector C that satisfies equation 2A + 3C - B = 0.
6.16
5.48
18.5
6.71
8.60
At t=0, a particle moving in the xy plane with a constant
acceleration of a=(2i + 4j) m/s**2 has a velocity Vo=(-4j) m/s
at the origin. Find the speed of the particle at t = 3 s.
10 m/ s
0
4 m/ s
24 m/s
20 m/s
A ball is projected from the ground into the air with velocity
Vo. At a height of 10.0 m the velocity is observed to be
V = 8.5 i + 9.1 j in m/s. Find Vo.
(8.5 i + 16.7 j) m/s
(16.7 i + 9.1 i) m/s
(8.5 i + 9.1 j) m/s
(2.5 i + 3.1 j) m/ s
(6.2 i + 1.1 j) m/s
Rain is falling vertically at constant speed of 6.0 m/s.
At what angle from the vertical do the rain appear to be falling
as viewed by the driver of a car traveling on a straight, level
road with a speed of 8.0 m/s?
    53 degrees
    37 degrees
    49 degrees
    41 degrees
    O degree
The speed of a particle moving in uniform circular motion is
doubled while the radius of the path of the particle is
increased by a factor of 4. The new centripetal force needed
wil| be :
the same as before
half as great as before
twice as great as before
1/4 of its original value
four times as great as before
A ball is thrown horizontally with speed Vo from the edge of
a cliff 35 m high. The ball strikes the ground at a point 80 m
from the base of the cliff. Find Vo.
30 m/ s
9.8 m/ s
2.5 m/ s
22 m/ s
45 m/s
As shown in Fig. 7, a 25-kg box is pushed across a frictionless
horizontal floor with a force of 20 N, directed at an angle of
20 degrees below the horizontal. The magnitude of the
acceleration of the box is:
```

 \(0.75 \mathrm{~m} / \mathrm{s} * * 2\)
 \(0.27 \mathrm{~m} / \mathrm{s} * * 2\)
 A3 \(17 \mathrm{~m} / \mathrm{s}^{* *} 2\)
 A4 \(21 \mathrm{~m} / \mathrm{s}^{* *} 2\)
 A5 \(0.82 \mathrm{~m} / \mathrm{s}^{* *} 2\)
 QO
 An object of mass $M=10 \mathrm{~kg}$ moving on frictionless horizontal
surface is subjected to two applied forces as shown in Fig. 2.
In which situation is the object accelerating to the right?
Q0
$\left(\begin{array}{l}d \\ (a) \\ (c) \\ (b) \\ (e)\end{array}\right)$
Two blocks $A(M A=4 \mathrm{~kg})$ and $B \quad(M B=20 \mathrm{~kg})$ are in contact with
each other and are placed on a horizontal frictionless surface.
A 36 - N constant force is applied to A as shown in Fig. 4. The
magnitude of the force exerted on A by B is
30 N
0 N
36 N
15 N
3.6 N
Two masses $m 1=2 k g, m 2=4 \mathrm{~kg}$ are connected by a light string
that passes over a frictionless and massless pulley (see Fig. 5).
Find the magitude of the acceleration of the masses.
$3.27 \mathrm{~m} / \mathrm{s}^{* *} 2$
$2.15 \mathrm{~m} / \mathrm{s} * * 2$
$10.5 \mathrm{~m} / \mathrm{s} * * 2$
$0.75 \mathrm{~m} / \mathrm{s} * * 2$
$1.23 \mathrm{~m} / \mathrm{s}^{* *} 2$
00
A stone, of mass m, is attached to a strong string and rotates
in a vertical circle of radius R. At the bottom of the path the
tension in the string is 3 times the weight of the stone. The
speed of the stone at this point is given by.
Sart (2gR).
$2 * S q r t(g R)$
2*gR
Sqrt(3gR)
Sqrt(gR/2)
A block attached to a string, rotates counter-clockwise in a
circle on a smooth horizontal surface. The string breaks at
point p (Fig. 6). What path will the block follow?
path B
path A
path C
path D
path E
A box slides down a 30 degree incline with an acceleration =
$3.2 \mathrm{~m} / \mathrm{s}^{* * 2}$. Find the coefficient of kinetic friction between
the box and the incline.
0.20
0.25
0.15
0.30
0.62

FIGURE-2

