Q1 Q0 Which of the following is NOT a unit vector?

Q0
QO d
QO Give the resultant displacement from KFUPM to theA2
A 4
A1 $1.50 \times 10 * * 8 \quad \mathrm{~km}$
$3.60 \times 10 * * 9 \mathrm{~km}$
$\begin{array}{llll}1.50 & x & 10 * * 6 & \mathrm{~km} \\ 2.50 & \mathrm{x} & 10 * * 7 & \mathrm{~km}\end{array}$
$\begin{array}{llll}1.50 & x & 10 * * 6 & \mathrm{~km} \\ 2.50 & \mathrm{x} & 10 * * 7 & \mathrm{~km}\end{array}$
2.00×10 ** 4 km
QO
Q6 Q0
QO
QO
Q0
A1
A 2
A3
A 4
A 5
Q0
Q7 Q0 An object moving along the x axis has a position given by
Q0
(1/2) (i +j)
vector a ${ }^{+}$|a|
j x i
(1/sqrt(3)) (i $+j+k)$
$0.6 j+0.8 k$
What is the angle between the two vectors $A=(i-2 j+2 k)$
and $B=(-2 i+j+2 k)$?
90 degrees
30 degrees
45 degrees
60 degrees
0 degrees
A student makes the journey from KFUPM to a Super Market and
then to Khobar City Center and finally to Exhibition Center.
The magnitude and the direction of each of these
displacements are indicated in Fig. 1.
Exhibition Center in unit vector notation.
$(6.2 \mathrm{i}+5.8 \mathrm{j}) \mathrm{km}$
$(-0.5 i+12.1$ j) km
(5.2 i +5.8 j) km
(13.2 i +12.1 j) km
(9.1 i +8.7 j) km
Dimension of an atomis often measured in anit called
Angstrom which is equal to 0.1 nm .1 mm is equal to:
$\left(1 \mathrm{~nm}=10^{* *}(-9) \mathrm{m}\right)$
10000000 Angstrom
10000 Angstrom
100000 Angstrom
1000000 Angstrom
20000 Angstrom
A student remembers that it takes roughly 8. 4 mi nutes for
the sun's light to reach the earth. Using this information and
the fact that the speed of light is $\left(3.0 \times 10^{* *} 8\right) \mathrm{m} / \mathrm{s}$, estimate
the distance to the sun in $k m$.
A car travels in a straight road with a velocity of v1=15 m/s
for half the distance between two cities and with a velocity
$v 2=30 \mathrm{~m} / \mathrm{s}$ for the other half. What is the average velocity of
the car for the entire trip?
$20.0 \mathrm{~m} / \mathrm{s}$
$22.5 \mathrm{~m} / \mathrm{s}$
$25.0 \mathrm{~m} / \mathrm{s}$
$18.5 \mathrm{~m} / \mathrm{s}$
$24.0 \mathrm{~m} / \mathrm{s}$
m, where t is measured in s. What is the
Page 1

```
                            examl
acceleration of the object when its velocity i s zero?
    -6.0 m/s**2
    Zero
    4.0 m/ s**2
    3.5 m/ s**2
    3.5 m/ s**2
A particle moving with a constant acceleration has a velocity
of 10 cm/s when its position is x0 =10 cm. It s position 4.0 s
| ater is x=-14 cm. What is the acceleration of the particle?
    -8.0 cm/ s**2
    -5.5 cm/ s**2
    5.5 cm/ s**2
    8.4 cm/ s**2
    -2.0 cm/s**2
A stone i s thrown vertically upward such that it has a speed
of 9.0 m/s when it reaches one half of its maximum height
above the | aunch point. Determine the maximum height.
    8.3 m
    2.8 m
    5.3 m
    6.5 m
    17 m
At t=0, a particle leaves the origin with a velocity of 9.0
m/s in the positive y direction and moves in the xy plane
with a constant acceleration a = (2.0 i-4.0 j) m/s**2. At the
instant the x-coordinate of the particle is 16 m, what is the
velocity of the particle?
    v=(8i - 7j) m/s
    v=(8i+25j) m/s
    v=(4i - 7j) m/ s
    v=(4i + 5j) m/s
    v=(4i - 25j) m/s
A ball is hit at ground level. After 3.0 s the ball is
observed to reach its maximum height above the ground level
at a horizontal distance of 30 m from where it been hit. What
is the initial speed of ball?
31 m/ s
25 m/ s
3 m/ s
23 m/ s
10 m/ s
A wheel has a 15 m radius and completes five turns about its
axis every mi nute at constant rate. What is the magnitude of
the acceleration of a point on the rim of the wheel?
    4.1 m/ s**2
    5.7 m/ s**2
    14 m/ s**2
    19 m/ s**2
    1.0 m/ s**2
A wide river has a uniform flow speed of 3.0 m/s toward the
east. A boat with a speed of 8.0 m/s relative to the water
leaves point (A) and heads in such a way that it crosses to
                                    Page 2
```

examl
a point (B) (see Fig.2):
I n what direction relative to east must the boat be pointed?
112 degrees
68 degrees
100 degrees
80 degrees
65 degrees
A 25-kg box is pushed across a rough horizontal floor with a
force of 200 N , directed 20 degrees below the horizontal
(Fig. 3). The coefficient of kinetic friction between the box
and the floor is 0.2. The acceleration of the box is:
$5.0 \mathrm{~m} / \mathrm{s} * * 2$
$5.6 \mathrm{~m} / \mathrm{s} * * 2$
$1.8 \mathrm{~m} / \mathrm{s}^{* *} 2$
$7.0 \mathrm{~m} / \mathrm{s} * * 2$
$4.7 \mathrm{~m} / \mathrm{s}^{* *} 2$
A 700-kg elevator accelerates downward at 3.8 m/s**2. The
tension force of the cable on the elevator is:
4.2 kN, up
2.1 kN, down
2.1 kN , up
4.8 kN , down
9.0 kN, up
When a $40-N$ force, parallel to the incline and directed up
the incline, is applied to a crate on a frictionless incline
that is 30 degrees above the horizontal, the acceleration of
the crate is $2.0 \mathrm{~m} / \mathrm{s}^{* * 2}$, down the incline. The mas of the
crate is:
14 kg
4.1 kg
5.8 kg
10 kg
6.2 kg
Three blocks ($A, B, C)$, each having mass M, are connected by
strings as shown in Fig. 4. Block C is pulled to the right by
a force F that causes the entire system to accelerate.
Neglecting friction, the tension Tl between blocks B and Cis:
2F/3
zero
F/ 2
F/3
F
Block A, with mass mA, is initially at rest on a frictionless
horizontal floor. Block B, with mass mB, is initially at rest
on the top surface of $A(F i g .5)$. The coefficient of static
friction between the two blocks is (u). Block A is pulled
with a force such that it begins to slide out from under B
when its acceleration reaches:
u.g
g
Page 3

```
                                    examl
    mB , u . g
    (mA/mB) , u . g
    (mB/mA) . u . g
A box with a weight of 50 N rests on a horizontal surface. A
person pulis horizontally on it with a force of F1=10 N and
it does not move. To start it moving, a second person pul|s
vertically upward on the box (Fig. 6) with a force F2. |f the
coefficient of static friction i s 0.4, what i s the smallest
F2 for which the box moves?
    25N
    10 N
    14N
    N
    35N
The iron ball shown in Fig. 7 i s being swung in a vertical
circle at the end of a 0.70-m string. What is the speed the
bal| can have at top of the circle for the tension in the
string to be zero at that point?
    2.6 m/ s
    1.3 m/ s
    3.9 m/ s
    6.9 m/ s
    9.8 m/ s
```


FIGURE-7

