examl
Q1 Q0 The standard kilogramis a platinum-iridium cylinder 39 mm Qo in height and 19.5 mm in radius. What is the density
Q0 of the material?
QO
$21 \mathrm{~g} / \mathrm{cm}^{* *} 3$
$1.0 \mathrm{~g} / \mathrm{cm}^{* *} 3$
$13 \mathrm{~g} / \mathrm{cm}^{* *} 3$
$11 \mathrm{~g} / \mathrm{cm**}$
$19 \mathrm{~g} / \mathrm{cm**} 3$
Fig (1) shows the velocity (Vx) of a particle moving
along x axis as a function of time (t). What is the
acceleration of the particle at $t=2.0 \mathrm{~s}$?
00
A1 $-4 \mathrm{~m} / \mathrm{s}^{* *} 2$
$+4 \mathrm{~m} / \mathrm{s} * * 2$
$-1 \mathrm{~m} / \mathrm{s}^{* * 2}$
$+1 \mathrm{~m} / \mathrm{s} * * 2$
$0 \mathrm{~m} / \mathrm{s} * * 2$
Q0
The speed of sound in air is about $350 \mathrm{~m} / \mathrm{s}$. Express this
speed in miles per hour (mi/h).
$(1 \mathrm{mile}=1.61 \mathrm{~km})$
$783 \mathrm{mi} / \mathrm{h}$
$350 \mathrm{mi} / \mathrm{h}$
$564 \mathrm{mi} / \mathrm{h}$
$980 \mathrm{mi} / \mathrm{h}$
$0 \mathrm{mi} / \mathrm{h}$
A particle moving along the x axis has a position given by
$x=(24 \mathrm{t}-2 \mathrm{t} * * 3)$ meters ,
where t is measured in seconds. How far is the particle
from the origin $(x=0)$ when the particle stops momentarily?
32 m
23 m
40 m
17 m
98 m
In 2.0 seconds, a particle moving with constant acceleration
along the x axis goes from $x=10$ m to $x=50 \mathrm{~m}$. The velocity
at the end of this time interval is $10 \mathrm{~m} / \mathrm{s}$. What is the
acceleration of the particle?
$-10 \mathrm{~m} / \mathrm{s}^{* * 2}$
$+15 \mathrm{~m} / \mathrm{s} * * 2$
$-15 \mathrm{~m} / \mathrm{s} * * 2$
$+20 \mathrm{~m} / \mathrm{s} * * 2$
$.20 \mathrm{~m} / \mathrm{s}^{* *} 2$
A stone is thrown downward from height (h) above the ground
with an initial speed of $10 \mathrm{~m} / \mathrm{s}$. It strikes the ground
3. 0 seconds I ater. Determine h.
74 m
44 m
14 m
90 m
60 m
QO
Fig (2) shows four vectors A, B, C, Which of the following
statements is correct:
$C=D+B-A$
$C=A+B+D$
$C=D-B+A$
Page 1

```
    C=A - B + D 
Unit vectors i,j,k have magnitudes of unity and are directed
in the positive directions of the x, y, z axes.
    The value of k.(k x i) is:
0
-1
+1
If we have two vectors A = (a i - 2 j) and B = (2 i + 3 j)
such that A.B = 4, find the value of a.
    5
    4
    \begin{array} { r } { 0 } \\ { - 5 } \end{array}
    -4
A particle starts from the origin at t=0 with a velocity of
(8j) m/s and moves in the xy plane with constant acceleration
of (4i - 2j) m/s**2. At the instant the x coordinate of the
particle is 32 m, what is the value of its y coordinate?
    16 m
    35 m
    45 m
    32 m
    12 m
A ball is thrown horizontally from the top of a building
100 m high. The ball strikes the ground at a point 65 m
horizontally away from the base of the building (Fig 3).
What is the speed of the ball just before it strikes the ground?
    47 m/ s
    40 m/ s
    37 m/ s
    14 m/ s
    50 m/ s
A particle moves at a constant speed in a circular path
with a radius of 2.0 cm. If the particle makes 4 revolutions
each second, what is the magnitude of its acceleration?
13 m/s**2
20 m/s**2
15 m/s**2
18 m/s**2
24 m/s**2
The pilot of an airplane flies due north relative to the
ground with a speed of 80 km/h. A wind is blowing towards
the east with a speed of 40 km/h. What is the speed of the
airplane relative to the wind?
89 km/h
85 km/h
81 km/h
76 km/h
72 km/h
A student is standing on a scale in an elevator. The apparent
weight of the student is greatest when the elevator:
```

A 4
accelerates upward.
moves upward at a constant velocity
moves downward at a constant velocity.
accelerates downward.
is not moving
A roller-coaster car has a mass of 500 kg when fully loaded
with passengers. The car passes over a hill of radius 15 m
(Fig 4). At the top of the hill, the car has a speed of 8 m/s.
What is the force of the track on the car at the top of the
hil|?
2800 N up
7000 N down
7000 N up
2800 N down
N
A 1.8 kg block is released from rest at the top of a rough
30 degrees inclined plane. As the block slides down the
incline, its acceleration is 3.0 m/s**2 down the incline.
Determine the magnitude of the force of friction acting
on the block.
3.4 N
4.2 N
3.0 N
3.8 N
2.3 N
A 3.0 kg block is pushed across a horizontal surface by
a force F=20 N making an angle of 30 degrees with the
horizontal (Fig 5). If the coefficient of kinetic friction
between the block and the surface is 0.3, what is the
magnitude of the acceleration of the block?
1.8 m/ s**2
2.8 m/ s**2
3.3 m/ s**2
5.4 m/ s**2
2.5 m/s**2
I n Fig (6), F=40 N and M=2 kg. What is the magnitude of the
acceleration of the suspended object M ?
(All surfaces are frictionless)
2.5 m/ s**2
2.8 m/ s**2
3.3 m/ s**2
5.4 m/ s**2
1.8 m/ s**2
A1 7.8 N
9.0 N
4.8 N
4.1 N
6.0 N
only on block A.
upward on block B and downward on block C.

```
00
    QO
Q1900
    QO
    Q0
    Q0
    00
Q20Q0
    QO
    Q0
    A 1
    A2
Page 3

\footnotetext{
examl
A4 upward on block A and downward on block C.
A5 only on block B.
}


PDF created with pdfFactory trial version www.pdffactory.com```

