King Fahd University of Petroleum and Minerals - Department of Physics
 Physics 101 First Major Exam - 19 October, 1996 (PHYS101.EX1.961).

Q1. The displacement of an accelerating particle is given by $\quad \mathbf{s}=\mathrm{k} \mathbf{v}^{\mathrm{m}} \mathbf{a}^{\mathrm{n}}$ where k is a dimensionless constant, \mathbf{a} is the acceleration and \mathbf{v} is the velocity.
(One) Determine by dimensional analysis the values of the constants m and n in order for the equation to be dimensionally correct.
(Two) Can one get the value of k from this analysis ?
Q2. A stone is dropped from a bridge that is 940 m above the water. Another stone is thrown vertically downward form this bridge 1.0 s after the first stone is dropped. Both stones strike the water at the same time.
(a) How long will it take the first stone to strike the water ?
(b) What was the initial speed of the second stone?

Q3. An object moves along the x-coordinate according to the equation $x(t)=\left(3-4 t^{2}+9 t^{3}\right) \quad m$. Determine:
(a) the average velocity between $t=1 \mathrm{~s}$ and $\mathrm{t}=2 \mathrm{~s}$?
(b) the instantaneous acceleration at $t=1 \mathrm{~s}$.

Q4. A person walks $12.0 \mathrm{~km}, 20^{\circ}$ south of east, and then walks $15.0 \mathrm{~km}, 10^{\circ}$ south of west. Call these displacements \mathbf{A} and \mathbf{B}, respectively.
(One) Write down in unit-vector notation these two displacements \mathbf{A} and \mathbf{B}. Take east along the positive x-axis and north along the positive y-axis.
(b) Find the magnitude and direction of the resultant vector.

Q5. At $t=0$, a particle leaves the origin with a velocity $\mathbf{v}_{\mathbf{o}}=12 \mathbf{j} \mathrm{~m} / \mathrm{s}$. Its acceleration is given by $\mathbf{a}=(\mathbf{i}-4 \mathbf{j})$ $\mathrm{m} / \mathrm{s}^{2}$. When the particle reaches its maximum y coordinate, the y component of its velocity is zero. Find
(a) the time the particle takes to reach the maximum y coordinate, and
(b) the coordinates of the particle at that time.

Q6. A cannon on the ground shoots out a ball at 60° to the horizontal with an initial speed of $30 \mathrm{~m} / \mathrm{s}$. The ball strikes a target located at a horizontal distance of 70 m from the cannon and at a height H above the ground.
(a) How long is the ball in the air ?
(b) What is the value of H ?

Q7. A spacecraft is circling the moon in an orbit of radius 1800 km . The spacecraft takes 19.0 h to complete one revolution about the moon.
(a) Find the speed of the spacecraft.
(b) Find the centripetal acceleration of the spacecraft.

Q8. Two blocks, connected by a string, are pulled across a smooth horizontal surface by a force applied to one of the blocks, as shown in the figure. $F=20 \mathrm{~N}, \mathrm{M}=1.5 \mathrm{~kg}$.

F

(a) What is the acceleration of the system ?
(b) What is the tension T in the cohnecting string?

Q9. A block of mass $M=30 \mathrm{~kg}$ moves with constant velocity along an inclined plane under the action of a force F, as shown in the figure. Take $\theta=5^{\circ}$ and $\mu_{k}=0.10$. Determine the force F.

