```
**********************************************************************
    QUESTION NO: 1
```

 0

A $0.3-\mathrm{kg}$ mass, attached to the end of a string, swings in a vertical circle, as shown in Figure 1. At the instant when theta equals 50 degrees, the tension in the string is 8.0 N .
What is the magnitude of the resultant force on the mass at this instant?
A. 6.5 N
B. 4.7 N
C. 8.4 N
D. 1.4 N
E. 7.9 N
_ $* *$

QUESTION NO: 2

0
In Figure 2, the coefficient of kinetic friction between m 1 and the table is 0.39 . The mass $\mathrm{ml}=37 \mathrm{~kg}$ and the mass $\mathrm{m} 2=55 \mathrm{~kg}$.
Assume the pulley is massless and frictionless.
The magnitude of the acceleration is:
A. $4.32 \mathrm{~m} / \mathrm{s}^{* *}$.
B. $5.07 \mathrm{~m} / \mathrm{s} * * 2$.
C. $4.68 \mathrm{~m} / \mathrm{s} * * 2$.
D. $3.51 \mathrm{~m} / \mathrm{s}^{* *}$.
E. $\quad 5.63 \mathrm{~m} / \mathrm{s}^{* *} 2$.
-QUESTION NO: 3

0
A 1 kg mass is attached to a light string of length 2 m to froma simple pendulum. The mass is released from rest at theta $=45$ degrees. Find the tension in the string at the lowest point.
A. 15.54 N
B. 13.34 N
C. 18.16 N
D. 16.37 N
E. 12.67 N

1
TEST CODE: PAGE: 002
$-* *$
QUESTION NO: 4

0
A force F , shown as a function of x in Figure 3, acts on
a 2 kg mass. If the particle starts with an initial speed of $8 \mathrm{~m} / \mathrm{s}$, find the speed of the particle at $\mathrm{x}=6 \mathrm{~m}$.
A. $10.2 \mathrm{~m} / \mathrm{s}$.
B. $\quad 9.2 \mathrm{~m} / \mathrm{s}$.
C. $8.8 \mathrm{~m} / \mathrm{s}$.
D. $6.2 \mathrm{~m} / \mathrm{s}$.
E. $12.4 \mathrm{~m} / \mathrm{s}$.

```
QUESTION NO: 5
    ******************
```

0

A 20 kg mass is fastened to a light spring ($\mathrm{k}=300 \mathrm{~N} / \mathrm{m}$) that passes over a pulley as shown in Figure 4. The pulley is frictionless, and the mass is released from rest when the spring is unstretched. After the mass has moved downwards 0.40 m , the speed of the 20 kg mass is:
A. $2.33 \mathrm{~m} / \mathrm{s}$.
B. $1.82 \mathrm{~m} / \mathrm{s}$.
C. $2.12 \mathrm{~m} / \mathrm{s}$.
D. $4.11 \mathrm{~m} / \mathrm{s}$.
E. $3.65 \mathrm{~m} / \mathrm{s}$.

- $* *$

```
QUESTION NO: 6
    ******************
0
```

A 3 kg object moving with $8 \mathrm{~m} / \mathrm{s}$ in the positive x direction has a one dimensional elastic collision with an object of mass M initially at rest. After the collision the object of the unknown mass M has a velocity of $6 \mathrm{~m} / \mathrm{s}$ in the positive x direction. The mass M is:
A. 5.0 kg .
B. 9.0 kg .
C. 6.6 kg .
D. 4.0 kg .
E. 8.1 kg .

1
TEST CODE: PAGE: 003
_ $* *$
QUESTION NO: 7

0
Three particles are located in the xy plane. The 40 g particle is located at $(4,3) \mathrm{m}$, and the 50 g particle is located at $(-2,-2) \mathrm{m}$. Where must the 20 g particle be placed so that the center of mass of this three-particle system is at the origin?
A. $(-3.0,-1.0) \mathrm{m}$.
B. $(-2.0,-0.67) \mathrm{m}$.
C. $(-6.0,-2.1) \mathrm{m}$.
D. $(-1.0,1.3) \mathrm{m}$.
E. $(2.1,-1.7) \mathrm{m}$.

- $* *$

QUESTION NO: 8

0
A mass ($\mathrm{ml}=5.0 \mathrm{~kg}$) is connected by a light cord that passes
over a pulley, to a mass ($\mathrm{m} 2=4.0 \mathrm{~kg}$) which slides on a smooth
surface as shown in Figure 5. The pulley (radius 0.2 m)
rotates about a frictionless axle. If the acceleration of m 2
is $3.5 \mathrm{~m} / \mathrm{s}^{* * 2}$, then the moment of inertia of the pulley is:
A. $0.20 \mathrm{~kg} . \mathrm{m}^{* *} 2$.
B. $0.42 \mathrm{~kg} \cdot \mathrm{~m} * * 2$.
C. $0.08 \mathrm{~kg} \cdot \mathrm{~m} * * 2$.

```
    D. 0.16 kg.m**2.
    E. 0.33 kg.m**2.
_ **********************************************************************
    QUESTION NO: 9
    *****************
0
A thin rod of mass M and length L is free to rotate about A , the midpoint of the rod. The rod is struck at one end by a ball of clay of mass m moving with speed \(v\), as shown in figure 6. The ball sticks to the rod. After collision, the angular momentum of the clay-rod system about A is:
A. \(m v L / 2\).
B. \(m v L\).
C. \(3 \mathrm{mvL} / 2\).
D. \(2 \mathrm{mvL} / 5\).
E. \(5 \mathrm{mvL} / 2\).
1
TEST CODE: PAGE: 004
_ \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
QUESTION NO: 10
*****************
0
A column of fluid, is open to the atmosphere at the top, and
is 9.5 m high. If the density of the fluid is \(1680 \mathrm{~kg} / \mathrm{m} * * 3\),
what is the total pressure at the bottom of this column?
A. \(2.58 * 10 * * 5 \mathrm{~Pa}\).
B. \(1.75 * 10 * * 5 \mathrm{~Pa}\).
C. \(2.25 * 10 * * 5 \mathrm{~Pa}\).
D. \(1.25 * 10 * * 5 \mathrm{~Pa}\).
E. \(3.65 * 10^{* *} 5 \mathrm{~Pa}\).
\(-* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
QUESTION NO: 11
*****************
0
```

The velocity of the flow of water in a pipe is $4.5 \mathrm{~m} / \mathrm{s}$. If the pipe has a diameter of 8.4 cm , what is the mass of water coming out of the pipe per second?
A. $24.9 \mathrm{~kg} / \mathrm{s}$.
B. $14.5 \mathrm{~kg} / \mathrm{s}$.
C. $29.9 \mathrm{~kg} / \mathrm{s}$.
D. $18.7 \mathrm{~kg} / \mathrm{s}$.
E. $11.3 \mathrm{~kg} / \mathrm{s}$.
$-* *$
QUESTION NO: 12

0
A pipe carrying water from the ground floor to the fourth floor of a building which is 13 m high. At the fourth floor the pipe has a cross-sectional area of $4.1^{*} 10^{* *-4} \mathrm{~m}^{* *}$, a pressure of $1.66^{*} 10^{* * 5} \mathrm{~Pa}$ and the velocity of water flow is $8.4 \mathrm{~m} / \mathrm{s}$. At the ground floor, the cross-sectional area of the pipe is $9.3^{*} 10^{* *-4} \mathrm{~m}^{* *}$, What is the pressure in the pipe at the ground floor?
A. $3.22 * 10 * * 5 \mathrm{~Pa}$.
B. $2.92 * 10 * * 5 \mathrm{~Pa}$.

```
    C. }3.41*10**5 Pa
    D. 2.44*10**5 Pa.
    E. 4.12* 10**5 Pa.
1
TEST CODE: PAGE: 005
_ **********************************************************************
```

```
QUESTION NO: 13
```

QUESTION NO: 13

0
The mass of a planet is $6.00^{*} 10^{* *} 24 \mathrm{~kg}$. The gravitational acceleration on the surface of this planet is $12.0 \mathrm{~m} / \mathrm{s}^{* *} 2$. The gravitational constant is G is $6.672^{*} 10^{* *}-11 \mathrm{~N} . \mathrm{m}^{*} * 2 / \mathrm{kg} * * 2$. Calculate the radius of this planet.
A. 5776 km .
B. 5347 km .
C. 5002 km .
D. 5112 km .
E. 5883 km .
_ $* *$
QUESTION NO: 14

0

```

Find the distance from center of the earth to the center of the moon, using the fact that the moon completes an orbit in 27.3 days. ( \(\mathrm{G}=6.672 \times 10^{* *}-11 \mathrm{~N} . \mathrm{m}^{* *} 2 / \mathrm{kg}^{* *} 2\), mass of the earth \(5.98 * 10 * * 24 \mathrm{~kg}\) ).
A. \(3.83 * 10^{* *} 8 \mathrm{~m}\).
B. \(6.38 * 10 * * 6 \mathrm{~m}\).
C. \(5.42 * 10 * * 8 \mathrm{~m}\).
D. \(2.43 * 10^{* *} 6 \mathrm{~m}\).
E. \(4.41 * 10 * * 7 \mathrm{~m}\).

\section*{QUESTION NO: 15 \\ ***************** \\ 0}

A particle at the end of a spring executes simple harmonic motion with an amplitude of 4.0 cm . At what displacement (x) will its speed be equal to one half its maximum speed?
A. 3.46 cm .
B. 5.20 cm .
C. 6.93 cm .
D. 7.12 cm .
E. 4.13 cm .

1
TEST CODE: PAGE: 006
QUESTION NO: 16
*****************
0
A particle of mass \(m=0.14 \mathrm{~kg}\) at the end of a spring executes a
simple harmonic motion according to the equation:
\[
\mathrm{x}=0.2 \cos (10 \mathrm{t}+\mathrm{pi} / 2)
\]

Find the maximum potential energy of the spring.?
A. 0.28 J .
B. 0.36 J .
C. 0.44 J .
D. 0.56 J .
E. 0.62 J .

QUESTION NO: 17
*****************
0
Consider a horizontal spring-mass system. The force constant of the spring is \(\mathrm{k}=360 \mathrm{~N} / \mathrm{m}\) and \(\mathrm{M}=1 \mathrm{~kg}\) is initially at rest. A bullet of mass 100 g is fired with initial speed vi= \(100 \mathrm{~m} / \mathrm{s}\) at the mass \(M\), and embedded in it. Find the maximum amplitude of oscillation of the mass bullet system. (see figure 7)
A. 0.50 m .
B. 0.55 m .
C. 0.67 m .
D. 0.43 m .
E. 0.38 m .
\[
\text { _ } * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
\]

QUESTION NO: 18
*****************
0
A uniform bar of length 1.2 m and weight 120 N is supported by two ropes (see figure 8). two \(400-\mathrm{N}\) weights are suspended at \(L 3\) and \(2 L / 3\) from the left end. Find the tension \(T 1\) in the right hand rope.
A. 531.2 N .
B. 300.2 N .
C. 415.7 N .
D. 117.8 N .
E. 422.7 N

1
TEST CODE: PAGE: 007
QUESTION NO: 19
\(* * * * * * * * * * * * * * * * *\)
0
A uniform circular disc of mass 4 kg is rolling without slipping along a horizontal surface. The velocity of its center of mass is \(5 \mathrm{~m} / \mathrm{s}\). Its total kinetic energy is:
A. 75 J .
B. 48 J .
C. 108 J .
D. 50 J
E. 15 J
- \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)

QUESTION NO: 20
*****************
0
A wheel (radius \(=12 \mathrm{~cm}\) ) is mounted on a frictionless,
horizontal axle that is perpendicular to the wheel and passes
through the center of mass of the wheel. A light cord wrapped
around the wheel supports a mass of 0.40 kg . The mass is
released from rest and the cord remains stretched. The mass is
observed to fall with a downward acceleration of \(3.0 \mathrm{~m} / \mathrm{s}^{*} * 2\).
What is the moment of inertia of the wheel?
A. \(0.013 \mathrm{~kg} . \mathrm{m}^{* *} 2\)
B. \(0.022 \mathrm{~kg} . \mathrm{m}^{* *} 2\)
C. \(0.008 \mathrm{~kg} . \mathrm{m}^{* *} 2\)
D. \(0.416 \mathrm{~kg} \cdot \mathrm{~m} * * 2\)
E. \(0.335 \mathrm{~kg} . \mathrm{m}^{* *} 2\)
- \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)

QUESTION NO: 21
*****************
0
A 10 g bullet is fired into a 990 g wooden block at rest on a horizontal surface that has coefficient of friction equal to 0.5 . The bullet remains stuck in the wood, which slides 0.4 m before coming to rest.
The speed of the bullet just before it strikes the block is:
A. \(198 \mathrm{~m} / \mathrm{s}\).
B. \(140 \mathrm{~m} / \mathrm{s}\).
C. \(171 \mathrm{~m} / \mathrm{s}\).
D. \(182 \mathrm{~m} / \mathrm{s}\).
E. \(163 \mathrm{~m} / \mathrm{s}\).

1
TEST CODE: PAGE: 008
_ \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
QUESTION NO: 22
*****************
0
How large a force is required to accelerate a 1500 kg car that is originally at rest to a speed of \(20 \mathrm{~m} / \mathrm{s}\) in a distance of 80 m .
A. 3750 N .
B. 8438 N .
C. 5859 N .
D. 3999 N .
E. 6865 N .
_ \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
QUESTION NO: 23
*****************
0
A 1000 kg car is moving with a constant velocity of \(3 \mathrm{~m} / \mathrm{s}\).
A constant frictional force of 400 N acts on the car.
What is the power delivered by the motor of the car?
A. 1200 W .
B. 1500 W .
C. 1800 W .
D. 1600 W .
E. 600 W .

QUESTION NO: 24
*****************
0
A football player on another planet can have a maximum horizontal
range of 20 meters if he jumps with an initial speed of \(10 \mathrm{~m} / \mathrm{s}\).
Find the acceleration due to gravity " g " on this planet:
A. \(5.0 \mathrm{~m} / \mathrm{s}^{*} * 2\).
B. \(3.2 \mathrm{~m} / \mathrm{s} * * 2\).
C. \(7.2 \mathrm{~m} / \mathrm{s} * * 2\).
D. \(9.8 \mathrm{~m} / \mathrm{s}^{* *} 2\).
```

 E. }1.3\textrm{m}/\mp@subsup{\textrm{s}}{}{**2
 1
QUESTION NO: 25

0
A. $8 \mathrm{~m} / \mathrm{s}^{* *} 2$.
B. $16 \mathrm{~m} / \mathrm{s} * * 2$.
C. $4 \mathrm{~m} / \mathrm{s}^{* *} 2$.
D. $12 \mathrm{~m} / \mathrm{s} * * 2$.
E. $6 \mathrm{~m} / \mathrm{s} * * 2$.

```
TEST CODE: PAGE: 009

An object moves with a constant speed in a horizontal circle of radius R . Its acceleration is \(32 \mathrm{~m} / \mathrm{sec}^{* *} 2\).
What would its acceleration have been if it had the same speed but the circle's radius is increased to 4 R ?
- \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)

QUESTION NO: 26
*****************
0
A student jumps vertically upwards. It takes him 0.6 seconds to jump up and come down to his initial position. His initial velocity and the maximum height he reached are, respectively:
A. \(2.94 \mathrm{~m} / \mathrm{s}, 0.44 \mathrm{~m}\).
B. \(1.96 \mathrm{~m} / \mathrm{s}, 0.20 \mathrm{~m}\).
C. \(2.45 \mathrm{~m} / \mathrm{s}, 0.31 \mathrm{~m}\).
D. \(3.35 \mathrm{~m} / \mathrm{s}, 0.66 \mathrm{~m}\).
E. \(4.41, \mathrm{~m} / \mathrm{s} 0.24 \mathrm{~m}\).
**********************************************************************
QUESTION NO: 27
*****************
0
A stone is dropped from the roof of a 60 m high building. At the same time a second stone is thrown vertically upward from the bottom of this building with an initial speed of \(20 \mathrm{~m} / \mathrm{s}\). Where will the two stones meet? (Hint: they will be at the same height
A. \(\quad 15.9 \mathrm{~m}\) from the ground.
B. 19.4 m from the ground.
C. 17.9 m from the ground.
D. 21.3 m from the ground.
E. 11.4 m from the ground.

1
TEST CODE: PAGE: 010
_ \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
QUESTION NO: 28
*****************
0
Two points in a plane have polar coordinates ( \(2.5 \mathrm{~m}, 30\) degrees)
and ( \(3.8 \mathrm{~m}, 120\) degrees). Find the distance between them.
A. 4.55 m .
B. 5.17 m .
C. 5.89 m .
D. 3.79 m .
E. 4.94 m
\(* * * * * * * * * * * * * * * * *\)
0
A motorboat is heading north at \(30 \mathrm{~km} / \mathrm{h}\) relative to the water in a place where the water current has a velocity of \(10 \mathrm{~km} / \mathrm{h}\) in a direction 6degrees south of east. Find the resultant velocity of the boat.
A. \(21.9 \mathrm{~km} / \mathrm{h}, 76.8\) degrees north of east.
B. \(20.5 \mathrm{~km} / \mathrm{h}, 73.0\) degrees north of east.
C. \(23.4 \mathrm{~km} / \mathrm{h}, 80.2\) degrees north of east.
D. \(17.1 \mathrm{~km} / \mathrm{h}, 66.1\) degrees north of east.
E. \(26.4 \mathrm{~km} / \mathrm{h}, 60.0\) degrees north of east.
_ \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
QUESTION NO: 30
*****************
0
The mass of a hollow spherical shell of inner radius 5 cm and outer radius \(15, \mathrm{~cm}\) and of density \(25 \mathrm{~g} / \mathrm{cm}^{* *} 3\) is equal to:
A. 340 kg .
B. 347 kg .
C. 331 kg .
D. 362 kg .
E. 353 kg .
```

