Exam 1, 101 (012)
Q1 Q0 Speed of sound is $340 \mathrm{~m} / \mathrm{s}$. Express this in millimeters
ch Qo per nanosecond[1 ns $=10 * *(-9) s]$.

1. QO

A1

3. $40 * 10 * *(-4)$	$\mathrm{mm} / \mathrm{ns}$	
3. $40 * 10 * *(-6)$	$\mathrm{mm} / \mathrm{ns}$	
$3.40 *$	$10 * *(-3)$	$\mathrm{mm} / \mathrm{ns}$
$3.40 *$	$10 * *(+3)$	$\mathrm{mm} / \mathrm{ns}$
$3.40 *$	$10 * *(+6)$	$\mathrm{mm} / \mathrm{ns}$

QO
The position of an object moving along an X-axis is
QO
A1
A2
A4

A5 0
2 a decreasing acceleration
A3 an increasing velocity
an increasing acceleration
a decreasing velocity
A balloon is going up with a speed of $10 \mathrm{~m} / \mathrm{s}$ and is
ch QO 100 m above the ground when a package is dropped from
2
the balloon. How long does the package take to reach
the ground?
5.7 s
4.0 s
3.75
2.0 s
6.0 s
Q6 00
ch QO
3 QO
QO
Q0
Q0
A1 $R=14.1$ m, THETA $=75$ degrees
$R=10.0$ m, THETA $=90$ degrees
$R=12.0 \mathrm{~m}$, THETA $=60$ degrees
$R=16.0$ m, THETA $=30$ degrees
$R=20.0 \mathrm{~m}$, THETA $=45$ degrees
A vector in the xy-plane has a magitude of 25.0 and
an x-component of 12.0 . The angle that it makes with
the positive x-axis is:
61.3 degrees
25.6 degrees
28.7 degrees

```
    64.3 degrees
    95.3 degrees
    Q0
Q8 Q0 The unit vectors in the positive directions of the x,
ch QO y, and z axes are labeled i, j, and k. The value of
3 QO [i.(j x k)] i s:
    Q0
    A1 +1
    A2 -1
    A
    -i
    +j
    Q0
Q9 00
ch QO
QO
QO
    Q0
    A1
    A3
    A4
    A5
    QO
Q10Q0
ch QO
QO
    Q0
    A1
    A
    A3
    A
    A5
Q1100
ch QO
Q0
    Q0
    A1
    A3
    A4
    A5
    OO
Q12Q0 The airplane shown in Fig. 2 is in level flight at an
ch QO altitude of 500 m and a speed of 41.7 m/s. At what
    A1 421 m
    A2 150 m
    A3 300 m
    A4 590 m
    A5
    QO
Q1300 A constant force, F, acts on a 19-kg particle. The particle,
ch QO initially at rest, moves a distance of 22 m in 3.8 s. Find
5 QO the magnitude of the force F.
    Q0
    A1
    A2
    A3
    A4
    A5
    Q0
Q14Q0 | n Fig. 3, ml = 22 kg and m2 = 37 kg. The masses are connected
ch QO by a light, horizontal cord and are being pulled across a
5 QO smooth level surface by a horizontal force F = 46 N. Find the
```

 Page 2
    ```
tension in the cord.
```

 QO
 17 N
 29 N
 46 N
 31 N
63 N
00
Q15 Q0 Three books (X, Y, and Z) rest on a table as shown in Fig. 4.
ch QO The weight of each book is also indicated in the Figure. The
5 QO
Q0
1 9. 0 N
4.0 N
5. 0 N
14 N
19 N
00
Q1 6 Q0
wo blocks weighing 25 kg and 35 kg respectively, are
connected by a string that passes over a massless pulley
as shown in Fig. 5. The tension in the string is:
286 N
210 N
500 N
350 N
250 N
A $90-\mathrm{kg}$ man stands in an elevator that is moving up at
Q1 7 Q0
ch QO
a constant speed of $5.0 \mathrm{~m} / \mathrm{s}$. The magnitude of the force
exerted by him on the floor is:
Q0
$\begin{array}{lll}A 1 & 882 & N \\ \text { A2 } & 0 & N \\ \text { A3 } & 94 & N\end{array}$
A4 450 N
A5 49 N
QO
Q1 8 Q0
ch QO
6 QO
A $3.5-\mathrm{kg}$ block is pulled at constant velocity along a
horizontal floor by a force $=15 \mathrm{~N}$ that makes an angle
of 40 degrees with the horizontal (Fig.6). Find the
magnitude of the force of friction between the block and
the floor
11 N
15 N
34 N
0.0 N
26 N
Q19Q0 Find the minimum coefficient of static friction between
ch QO the tyres of a car and a level road if the car is to make
6 Q0
Q0
A1
0.315
A 2
A3
A4
A5
Q0
Q2 0 Q0
Ch 00
6 QO
to a 1.0-kg stone. The stone swings in a vertical circle,
and has a speed of $5.0 \mathrm{~m} / \mathrm{s}$ at the top of the circle.
The tension in the string at this point is approximately:
Q0
A1 15 N
A2 11 N
A3 28 N

