Exam1, 101 (011)
ch QO per hour ($1 \mathrm{mile}=1609 \mathrm{~m})$.

1. Q0
A1 $738 \mathrm{miles} / \mathrm{h}$
A2 $533 \mathrm{miles} / \mathrm{h}$
A3 $945 \mathrm{miles} / \mathrm{h}$
A4 $853 \mathrm{miles} / \mathrm{h}$
A5 $443 \mathrm{miles} / \mathrm{h}$
QO
Q2 Q0 The average radius of a nucleus is $R=10.0 \mathrm{fm}$.
ch QO Find the density of the nucleus which has a mass
2. QO of $15 \mathrm{u}\left[1 \mathrm{fm}=10 * *(-15) \mathrm{m}, 1 \mathrm{u}=1.66^{*} 10 * *(-27) \mathrm{kg}\right]$.
Q0
A1 5.94* $10 * * 15 \mathrm{~kg} / \mathrm{m}^{* *} 3$
A2 5.94* $10 * * .5 \mathrm{~kg} / \mathrm{m}^{* * 3}$
A3 1. $66^{*} 10 * * .27 \mathrm{~kg} / \mathrm{m}^{* *} 3$
A4 $1.68^{*} 10 * *-15 \mathrm{~kg} / \mathrm{m}^{* * 3}$
A5 2.94* $10 * * 5 \mathrm{~kg} / \mathrm{m}^{* *} 3$
Q0
Q3 Q0 How far does the runner whose velocity - time graph
ch QO is shown in Fig. 1 travel in 10 s ?
2 QO
$\begin{array}{ll}20 & \mathrm{~m} \\ 24 & \mathrm{~m} \\ 28 & \mathrm{~m} \\ 32 & \mathrm{~m} \\ 16 & \mathrm{~m}\end{array}$
A car travelling $20.0 \mathrm{~m} / \mathrm{s}$ is 30.0 m from a wall
ch QO when the driver slams on the brakes. The car hits the
2 Qo wall 2.00 s later. How fast is the car travelling
when it hits the wall?
Q0
A1 $10.0 \mathrm{~m} / \mathrm{s}$
A2 $11.8 \mathrm{~m} / \mathrm{s}$
A3 $5.60 \mathrm{~m} / \mathrm{s}$
A4 $7.45 \mathrm{~m} / \mathrm{s}$
A5 $8.50 \mathrm{~m} / \mathrm{s}$
Q0
0500
Q5 Q0 The position of a particle moving along the x axis
Ch QO is described by the equation $x(t)=5 \cdot 0+2 \cdot 0 t+t * * 3$.
2 QO Find its average acceleration for the time interval
QO t $=1.0 \mathrm{~s}$ tot $=2.0 \mathrm{~s}$.
Q0
1 9. $0 \mathrm{~m} / \mathrm{s}^{* *} 2$
$27.3 \mathrm{~m} / \mathrm{s}^{* *} 2$
A3 $5.0 \mathrm{~m} / \mathrm{s}^{* * 2}$
A4 $11 \mathrm{~m} / \mathrm{s} * * 2$
A5 $13 \mathrm{~m} / \mathrm{s}^{* *} 2$
Q6 Q0
ald
ch Qo velocity vo and reaches its maximum height in 6.0 s.
QO
A1 9.0 s
A2 12 s
A3 6.0 s
A4 18 s
A5 15 s
Q7 Q0
ch QO Vector $A=(5.0 i+3.0 j) m$, and vector B is $6 m$ in ength
3 Qo and making 120 degrees angle with tve x-axis. Find
QO
$A-B$.
Q0

```
    ( 2.0 i + 7.5j )m
    If a=(3.0i + 4.0j)m and b=(5.0i - 2.0j)m, find the angle
    between the two vectors.
75 degrees
31 degrees
82 degrees
55 degrees
g3 degrees
For the following three vectors;
ch QO A=2i+3j+4k, B=4i+4j and C= 2i +2k, find A.(BXA).
3 QO
O
-16i+16j-8k
    16i-16j+8k
    8i-8j-8k
    -8i+8j+8k
A plane traveling north at 200 m/s turns and then travels
south at 200 m/s. The change i n its velocity is:
    400 m/s South
    400 m/s North
    200 m/s North
    200 m/s South
    0 m/ s
A stone i s thrown horizontally from the top of a 40m
high hill. It strikes the ground at an angle of 30
degrees as shown i n Fig.2. With what speed was it
thrown?
49 m/ s
19 m/ s
10 m/ s
9 m/ s
m}/\textrm{s
A particle starts fromthe origin at t = 0 with a velocity
of 8.0j m/s and moves in the XY plane with a constant
acceleration of (4.0i +2.0j)m/s**2. At the instant the
X coordinate of the particle is 32 m, find its y coordinate.
4 m
24 m
32 m
16 m
64 m
A river has a steady flow of 0.30 m/s. A student swims
downstream a distance of 1.2 km and returns to the starting
point. If the student can swim at a constant speed of
v in sti|l water and the downstream portion of the swim
takes him 20 mi nutes, the time required for the entire
swi m i s:
70 mi nutes
50 mi nutes
20 minutes
90 mi nutes
O mi nutes
A 16-kg block and an 8-kg block i s connected by a string
as shown in Fig.3.lf the pul|ey is massless and the
surface is frictionless, the magnitude of the acceleration
of the 8-kg block i s:
```

```
    Q0
    A1 g/3
    A2 3g/5
    A3 4g/3
    A4
    A5 g/2
    QO
Q15Q0 A 70-kg man stands on a spring scale in an elevator
ch QO that has a downward acceleration of 2.8 m/s**2. The
5 Q0
    QO
    A1 490 N
    A2 980 N
    A3 686 N
    A4 343 N
    A5 170 N
    QO
Q16Q0
ch Q0
5 A 1
of the displacement
of the initial velocity
of the final velocity
opposite to the frictional force
A person pul|s a 50-kg box horizontal|y with a constant
Q17Q0 horizontal force of 200 N.If the coefficient of kinetic
ch QO friction muk is 0.2 and the coefficiet of static friction
OQO
    QO
A1
    A3
    A4
    A 5
    QO
Q18Q0
Ch Qo
6 QO
    Q0
    QO
    0
    A1
    A3
    A4
    A 5
    QO
Q19Q0
Ch Qo
6 A1
    A2
    A3
    A4
    A }
    QO
Q2OQ0
5 QO
    QO
    QO
    A1
    A2
    A 3
    A4
    A 5
    QO
Q21Q0
ch QO
g
scale will read:
68
Acceleration is al ways in the direction:
of the net force
mus is 0.3. Find the acceleration of the box.
2 m/ s**2
1 m/s**2
4 m/s**2
. m/s**2
0 m/s**2
A block of mass M = 10kg is pushed up along a 30 degree
inclined plane with a force F parallel to the inclined
plane. If the velocity of the block is constant and
the coefficient of kinetic friction muk is 0.2, find
the magnitude of the force.
    66 N
    95 N
    17 N
    6.7 N
    9 N
    An object moving at constant speed i n a circular path
    has an acceleration of constant magnitude
    has an acceleration of constant direction
    has zero acceleration
    has constant velocity
    has a zero net force acting on it
A motorcycle and 60.0 kg rider accelerate at 3.00 m/s**2
up an inclined plane 10.0 degrees above the horizontal.
Find the magnitude of the net force acting on the rider.
    180 N
    588 N
    102 N
    282N
    78 N
A monkey hangs vertically from a rope in a descending
    elevator that decelerates at 2.4 m/s**2.If the tension
```

 Page 3
    ```
Exam 1, 101 (011)
```

5 QO in the rope is 400 N , find the mass of the monkey.
Q0
A1 33 kg
A2 54 kg
A3 41 kg
A4 167 kg
A5 25 kg
QO
Q22Q0 One end of a $1.0-m$ string is fixed, the other end is attached
ch Q0 to a 2.0-kg stone. The stone swings in a vertical circle,
6 Q0 and has a speed of $4.0 \mathrm{~m} / \mathrm{s}$ at the top of the circle.
QO The tension in the string at this point is approximately:
Q0
$\begin{array}{ll}A 1 & 12 \\ \end{array}$
$\begin{array}{ll}\text { A2 } & 0 \\ \text { A3 } & 20\end{array}$
A4 32 N
A5 9.8 N

