Exam 1, $101(002)$

```
Q1 Q0 A car travels at 40.0 km/h for 2.00 h, then a
ch Q0 50.0 km/h for 1.00 h, and finally at 20.0 km/h
2. Q0 for 0.500 h. What is the average speed of the car ?
***QO
40.0 km/h
36.7 km/h
55.0 km/h
45.0 km/h
31.6 km/h
Which of the following statements is CORRECT?
Q2 Q0
Ch QO
3. Al The magnitude of a vector cannot be negative.
***A2 The magnitude of the displacement of a particle can be
    greater than the distance traveled.
lt is possible to add a vector quantity to a
        scalar quantity.
When the result of adding t wo vectors gives zero,
        then these vectors have different magnitudes.
An object moved once around a given circle has
    a non-zero displacement.
A stone is thrown horizontally from the top of
ch OO a building, of height H, with an initial speed of v0= = 15 m/ s
4. Q0 Find the speed (v) of the stone 2.0 s after it is thrown
***QO (see Fig. 5).
25 m/ s
20 m/ s
15 m/ s
38 m/ s
m/ s
A 2.0 kg block slides down a frictionless 15 degrees inclined
plane. A force, F, acting parallel to the incline is applied
to the block (see Fig. 1). The acceleration of the block is
1.5 m/ s**2 down the incline. What i s the magnitude of F?
2.1 N
8.1 N
3.0 N
1.0 N
16 N
A certain brand of house paint claims a coverage of 500
ft**2 / gal ( 1 ft= 30.48 cm; 1 gal=3.78 liter). Express
this quantity in m**2/|iter.
    12.3
    5.60
    7.43
    3.54
    18.1
If the position of a particle is given by:
where t is in seconds and x i n meters. Find the average
velocity between t = 1 and t = 3 s.
    -3.0 m/s
    6.0 m/ s
    -4.0 m/ s
    -2.5 m/ s
    10 m/ s
A jet-plane must reach a speed of 500 km/ h on the runway
for take off. Starting from rest, what is the least constant
acceleration needed for take off from a 3.0 km runway?
```

Page 1

Q0 A1
A3 A 4

$4.17 \times 10 * * 4$	$\mathrm{~km} / \mathrm{h} * * 2$
$1.60 \times 10 * * 2$	$\mathrm{~km} / \mathrm{h} * * 2$
9.81	$\mathrm{~km} / \mathrm{h} * * 2$
0	$\mathrm{~km} / \mathrm{h} * * 2$
$7.82 \times 10 * * 4$	$\mathrm{~km} / \mathrm{h} * * 2$

A boy throws a stone vertically downward with an initial
speed of $10.0 \mathrm{~m} / \mathrm{s}$ from the top of a 30.0 m high building.
What is the speed of the stone when it hits the ground ?
$26.2 \mathrm{~m} / \mathrm{s}$
$9.81 \mathrm{~m} / \mathrm{s}$
$4.90 \mathrm{~m} / \mathrm{s}$
$31.5 \mathrm{~m} / \mathrm{s}$
$0 \quad \mathrm{~m} / \mathrm{s}$
The angle between vector $B=4.0 j+3.0 k$, and the positive
y axis is approximately:
37 degrees
68 degrees
53 degrees
90 degrees
0 degree
Fig. 2 shows vectors A and B which have the same manitudes.
Let $C=A$ - B and et the x and y components of C be Cx and
Cy, respectively. What are the signs of $C x$ and $C y$?
Cx is negative and $C y$ is positive
Cx is positive and Cy is positive
Cx is negative and Cy is negative
Cx is positive and Cy is negative
Cx is zero and Cy is zero
A car is moving with a speed of $18.0 \mathrm{~m} / \mathrm{s}$ due north at one
moment and $35.2 \mathrm{~m} / \mathrm{s}$ due east 8.00 s Iater. Over this time
interval, determine the average acceleration of the car.
$4.94 \mathrm{~m} / \mathrm{s}^{* * 2}$ making an angle 27 degrees S of E
$4.94 \mathrm{~m} / \mathrm{s}^{* *} 2$ making an angle 27 degrees N of E
$6.65 \mathrm{~m} / \mathrm{s}^{* * 2}$ making an angle 27 degrees S of E
$6.65 \mathrm{~m} / \mathrm{s}^{* * 2}$ making an angle 27 degrees N of E
$2.15 \mathrm{~m} / \mathrm{s}^{* * 2}$ making an angle 63 degrees N of E
Find the magnitude of the centripetal acceleration of a
particle on the tip of a fan blade, 0.150 m in radius,
rotating at 1200 revolutions every minute.
$2370 \mathrm{~m} / \mathrm{s} * * 2$
$9810 \mathrm{~m} / \mathrm{s} * * 2$
$4750 \mathrm{~m} / \mathrm{s} * * 2$
$6550 \mathrm{~m} / \mathrm{s} * * 2$
$1110 \mathrm{~m} / \mathrm{s} * * 2$
A boat can travel with a velocity of $1.70 \mathrm{~m} / \mathrm{s}$ in still
water (that is $V b w=1.70 \mathrm{~m} / \mathrm{s})$. The boat heads (points)
across a river where the current is $0.75 \mathrm{~m} / \mathrm{s}$ (that is Vwg =
$0.75 \mathrm{~m} / \mathrm{s})$. What is the speed of the boat relative to the
ground?
$1.86 \mathrm{~m} / \mathrm{s}$
$0.75 \mathrm{~m} / \mathrm{s}$
$9.81 \mathrm{~m} / \mathrm{s}$
$4.90 \mathrm{~m} / \mathrm{s}$
$1.70 \mathrm{~m} / \mathrm{s}$

Exam 1, 101 (002)

```
Q14Q0
ch QO
QO
    QO
    QO
    QO
    Q0
    QO
    A1
    A
    O
    A1
    A2
    A3
```

 Quadrant (1)
    ```
    Quadrant (1)
Quadrant (4)
Quadrant (4)
none of the other answers
none of the other answers
Q1500 A 500 N man is riding in an el evator. At a certain instant his
Q1500 A 500 N man is riding in an el evator. At a certain instant his
5 QO At this instant, the elevator may be:
5 QO At this instant, the elevator may be:
```

Fig. (3) shows a circular path taken by a particle. The

```
Fig. (3) shows a circular path taken by a particle. The
particle is traveling clockwise around the circle. At one
particle is traveling clockwise around the circle. At one
instant, the velocity of the particle is
instant, the velocity of the particle is
            = - 3*i + 3*j m/s
            = - 3*i + 3*j m/s
where i and j are unit vectors along the x and y axes
where i and j are unit vectors along the x and y axes
respectively. In which quadrant is the particle traveling
respectively. In which quadrant is the particle traveling
at this instant?
at this instant?
Quadrant (3)
Quadrant (3)
Quadrant
Quadrant
    accelerating upward.
    accelerating upward.
    accelerating downward
    accelerating downward
    moving downward at constant speed.
    moving downward at constant speed.
    not moving.
    not moving.
    moving upward at constant speed.
    moving upward at constant speed.
Two men pull in opposite directions on the two ends of a light
Two men pull in opposite directions on the two ends of a light
rope. Each man pulls with a force 100 N. Find the tension in
rope. Each man pulls with a force 100 N. Find the tension in
the rope.
the rope.
    100 N
    100 N
    50 N
    50 N
    200N
    200N
    150 N
    150 N
    1 4 1 ~ N
    1 4 1 ~ N
Two masses ml = 10 kg, m2 = 5 kg are attached by a light string
Two masses ml = 10 kg, m2 = 5 kg are attached by a light string
that passes over a frictionless pulley of negligible mass
that passes over a frictionless pulley of negligible mass
(Fig. 4). The mass ml lies on a horizontal frictionless surface
(Fig. 4). The mass ml lies on a horizontal frictionless surface
and is acted on by a force F = 10 N. The mass m2 is:
and is acted on by a force F = 10 N. The mass m2 is:
    Falling with an acceleration of 2.7 m/s**2.
    Falling with an acceleration of 2.7 m/s**2.
    Falling with an acceleration of 2.7 m/s**2.
    Rising with an acceleration of 2.7 m/s**2.
    Rising with an acceleration of 2.7 m/s**2.
    Rising with an acceleration of 2.7 m/s**2.
    Falling with constant speed of 5.0 m/s.
    Falling with constant speed of 5.0 m/s.
    Falling with constant speed of 5.0 m/s.
    Staying stationary
    Staying stationary
    Staying stationary
    Falling with an acceleration of 9.8 m/s**2.
    Falling with an acceleration of 9.8 m/s**2.
    Falling with an acceleration of 9.8 m/s**2.
A certain force when applied to mass ml gives an acceleration
A certain force when applied to mass ml gives an acceleration
of 12.0 m/s**2 and when applied to mass m2 gives an acceleration
of 12.0 m/s**2 and when applied to mass m2 gives an acceleration
of 3.30 m/s**2. What acceleration would the same force give
of 3.30 m/s**2. What acceleration would the same force give
when applied to an object of mass = (ml + m2)?
when applied to an object of mass = (ml + m2)?
    2.59 m/ s**2
    2.59 m/ s**2
    6.00 m/ s**2
    6.00 m/ s**2
    7.65 m/ s**2
    7.65 m/ s**2
    8.70 m/ s**2
    8.70 m/ s**2
    15.3 m/ s**2
    15.3 m/ s**2
A 5.0-kg block is pulled on a horizontal floor with a force
A 5.0-kg block is pulled on a horizontal floor with a force
of 20 N that makes an angle 30 degrees with the horizontal
of 20 N that makes an angle 30 degrees with the horizontal
(see Fig. 6). If the block is pulled at a constant velocity,
(see Fig. 6). If the block is pulled at a constant velocity,
what is the coefficient of kinetic friction between the block
what is the coefficient of kinetic friction between the block
and the floor?
and the floor?
0.44
0.44
0.31
0.31
0.12
0.12
0.5
0.5
0.80
```

0.80

```

Q20Q0 One end of a 1.0 -m string is fixed, the other end is attached ch Q0 to a 2.0-kg stone. The stone swings in a vertical circle,
6 QO and has a speed of \(4.0 \mathrm{~m} / \mathrm{s}\) at the top of the circle.
QO The tension in the string at this point is approximately:
Q0
\(\begin{array}{lll}\text { A1 } & 12 & \mathrm{~N} \\ \text { A2 } & 0 & \mathrm{~N}\end{array}\)
A3 20 N
A4 32 N
A5 9.8 N```

