Final 101 032
Q1 Q0 During a short interval of time the velocity v (in m/s) of
a car is given by $v=b^{*} t * * 3$, where the time t is in
seconds. The unit of b is:
0
$\mathrm{m} / \mathrm{s} * * 4$
$s^{* *} 4 / m$
$\mathrm{m} / \mathrm{s} * * 3$
m*s**
$s^{* *} 3 / m$
Q0
Q2 Q0
A ball is in free fall. Its acceleration is:
(ascent MEANS going up, descent MEANS going down)
downward during both ascent and descent
downward during ascent and upward during descent
upward during ascent and downward during descent
upward during both ascent and descent
downward at all times except at the very top, where
it is zero
Fig. 1 shows three vectors A, B and C. The magnitude of these
vectors are $4.0 \mathrm{~m}, 6.0 \mathrm{~m}$ and 4.0 m respectively. Find the
magnitude of the vector D defined as: $D=A+B+C$

$$
\begin{array}{ll}
10 & \mathrm{~m} \\
4.0 & \mathrm{~m} \\
13 & \mathrm{~m} \\
8.5 & \mathrm{~m} \\
14 & \mathrm{~m}
\end{array}
$$

Q0
Q4 Q0 A particle is in uniform circular motion in the horizontal
Q0 (x, y) plane whose origin is at the center of the circle.
Q0 At a point, the instantaneous acceleration of the particle is $a=(3 i+3 j) \mathrm{m} / \mathrm{s}^{* *} 2$. At this instant, the particle is:
Q0
A 1
A 2
A 3
A 4
$A 5$
00
A 13 N weight and a 12 N weight are connected by a massless
string over a massless, frictionless pulley. The 13 N weight has
a downward acceleration equal to:

$\mathrm{g} / 25$
$\mathrm{g} / 12$
g/ 13
g
(13/25)g
A 12 N horizontal force is trying to move a 40 N block initially
at rest on a rough horizontal surface. The coefficients of
static and kinetic friction between the block and the surface
are 0.50 and 0.40, respectively. Find the frictional force on the block.

12 N
8. 0 N

16 N
20 N
40 N
Q0
A 5.0 kg cart is moving horizontally at $6.0 \mathrm{~m} / \mathrm{s}$. In order to change its speed to $10.0 \mathrm{~m} / \mathrm{s}$, the net work done on the cart must be:

QO
A1 160
90
40
400
550 J
Q0
Q8 Q0 A constant horizontal force of 10 N is applied to the free end
QO of a horizontal ideal spring (with the other end fixed). The
Qo spring constant is $100 \mathrm{~N} / \mathrm{m}$. The elastic potential energy stored
Page 1
in the spring is:
$\left.\begin{array}{ll}0.5 & \\ 2.5 & \} \\ 5.0 & j \\ 10 & j \\ 200\end{array}\right\}$

A 6.0 kg block is released from rest 80 m above the ground. When it is 20 m above the ground its kinetic energy is:

3500
4800
1200
$120 \quad J$
601
A 80 kg man (at rest) standing on a frictionless surface throws
a 100 g ball away from him along the positive x axis, giving it
QO a speed of $8.0 \mathrm{~m} / \mathrm{s}$. What velocity does the man acquire as
a result?
Q0
1 $0.01 \mathrm{~m} / \mathrm{s}$ along $(-x)$ direction
A 2
A 3
A4
A 5
QO
A 140 gram ball is moving horizontally with a speed Vi of
$40.0 \mathrm{~m} / \mathrm{s}$ before hitting a bat. After collision, the ball
travels with a speed $V f=40.0 \mathrm{~m} / \mathrm{s}$ in the direction shown in
Fig 2. What is the magnitude of the impulse that acts on the ball from the bat?
$10.8 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
$0 \quad \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
$13.2 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
$40.0 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
$5.60 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
Q0
A 2.0 kg body (A) moves in the tx direction with a speed V. It makes an elastic head-on collision with another body (B)
initially at rest. After collision, body (A) continues to move in the $+x$ direction with a speed $=V / 4$. Find the mass of body (B).
1.2 kg
0.8 kg
8.0 kg
0.5 kg
2.0 kg

Q0
Q1300 A rod is pivoted about its center. A 5.0 N force is applied
Q0 4.0 m from the pivot and another 5.0 N force is applied 4.0 m
QO from the pivot, as shown in Fig 4. The magnitude of the total
QO
QO
A 1
A 2
A
A 4
A5
Q14Q0
A 6.0 kg uniform solid cylinder is rolling without s!ipping on a horizontal surface. A horizontal force (F) is applied to the axle at its center of mass and gives the center of mas an acceleration of $4.0 \mathrm{~m} / \mathrm{s}^{* *} 2$. Find the magnitude of the frictional force of the surface.

12 N
6.0 N
9. 0 N

0
24 N
A rod rests on horizontal frictionless surface. Two forces
that are equal in magnitude and opposite in direction are

1 The linear momentum of the c. m. of the rod is constant.
A2 The angular acceleration of the rod $=0$
A3 The angular momentum of the rod about its c. m. = 0
A4 The rotational kinetic energy of the rod about its c. m. $=0$
A5 The rotational inertia of the rod about its c. $\mathrm{m} .=0$
QO
29 N
A wire stretches 1.0 cm when a force F is applied to it. The
same force is applied to a wire of the same material but with
twice the diameter and twice the length. The second wire
stretches:
0.50 cm
0.25 cm

1. 0 cm
2.0 cm
4.0 cm
QO
Q1800
Q0
Q0
A 2
0 N
$656 N$
480 N
176 N
Four equal masses, 2. 0 kg each, are placed at the four corners
of a square of side 10 cm as shown in Fig 7. What is the
magnitude of the gravitational force on one of the masses due
to the other three?
5. 1 * 10 **. 8 N
4.5 * 10 **. 8 N
3.7 * $10 * * .8 \mathrm{~N}$
2.6 * 10**. 8 N
2. 5 * $10 * * .8 \mathrm{~N}$
The escape speed from a certain planet for an empty spaceship
of mass M is 2.0 * $10 * * 4 \mathrm{~m} / \mathrm{s}$. What is the escape speed for
a fully loaded spaceship which has mass = 3*M?
$2.0 * 10 * * 4 \mathrm{~m} / \mathrm{s}$
$4.0 * 10 * * 3 \mathrm{~m} / \mathrm{s}$
1.0 * $10 * * 4 \mathrm{~m} / \mathrm{s}$
8.0 * $10 * * 4 \mathrm{~m} / \mathrm{s}$
$6.0 * 10 * * 4 \mathrm{~m} / \mathrm{s}$
The gravitational acceleration at the surface of Earth =
$9.8 \mathrm{~m} / \mathrm{s}^{* *} 2$. Find the gravitational acceleration at an altitude
equal to 3 times the radius of earth.
$0.6 \mathrm{~m} / \mathrm{s}^{* *} 2$
$9.8 \mathrm{~m} / \mathrm{s} * * 2$
$0 \mathrm{~m} / \mathrm{s} * * 2$
$3.3 \mathrm{~m} / \mathrm{s} * * 2$
$2.5 \mathrm{~m} / \mathrm{s}^{* *} 2$
A 1200 kg satellite orbits the Earth (Mass = 5.98*10**24 kg
and Radius $R=6.37 * 10 * * 6 \mathrm{~m})$ in an orbit of radius $=2 * R$.
How much energy is needed to move the satellite from this
orbit to another orbit of radius $=3^{*}$ R?
6. $26 * 10 * * 9$

2. $25 * 10 * * 9$
```
    3. 10*10**g
    5.00*10**g
    3.62*10**9
```

The density of oil is $0.8 \mathrm{~g} / \mathrm{cm}^{* * 3}$. The height h of the column of
oil as shown in Fig 8 is: (The density of water is $1.0 \mathrm{~g} / \mathrm{cm}^{*}{ }^{*} 3$)
10 cm
4.6 cm
8.0 cm
12 cm
11 cm
An object hangs from a spring balance. The bal ance indicates
30 N in air, 20 N when the object is completely submerged in
water, and 24 N when the object is completely submerged in
a liquid. The density of the liquid in $\mathrm{g} / \mathrm{cm}^{* *} 3$ is:
0.6
2.5

1. 2
0.4
0.3
Q0
02500
QO
QO
Q0
A1
A 2
A 3
A5
QO
Q26Q0
QO
QO
Q0
Q0
QO
QO
A 1
A 2
A 3
A 4
A5
Q0
Q27Q0
Q0
Q0
A1
A 2
A particle is in simple harmonic motion along the x axis. The
amplitude of the motion is Xm. At one point in its motion its
kinetic energy is $K=5$ and its potential energy is $U=3 \mathrm{~J}$.
When it is at $X=X m$, the kinetic and potential energies are:
$K=0 \quad$ and $U=8$
$K=5 j$ and $U=0$
$K=8 j$ and $U=0$
$K=5 j$ and $U=3$
$K=0 j$ and $U=-8$

Q30Q0 The period of a simple pendulum is 1.0 s on Earth where the QO acceleration of gravity is g. When brought to a planet where Qo the acceleration of gravity is g/16, its period becomes:
4.0 s
1.0 s

Final Exam - 032-Figures

Figure 1

Figure 2

Figure 3

Figure 5

Figure 10
Figure 9

