Name:

ID#

1) A 4-kg block slides 2 m down a rough incline ($\mu_k = 0.1$) from point A to point B. A 3-N force acts on the block between A and B as shown in the figure. If the kinetic energy of the block at A is 20 J, What is its kinetic energy at B?

$$W_g = (mg \sin 30) d = 4 (9.8) \sin 30 (2) = 39.2 J$$

$$W_F = F \cdot \vec{d} = 3 (2) \cos 30 d = -6.5 J$$

$$W_{f_k} = -f_k d = -M_k m g \cos 30 d = -6.8 J$$

$$W_{\text{net}} = K_{\text{B}} - K_{\text{A}}$$

 $39.2 - 6 - 6.8 = K_{\text{B}} - 20 \text{ J}$
 $K_{\text{B}} = 26.4 + 20 = 46.4 \text{ J}$

- 2) A 1-kg block is dropped onto a relaxed vertical spring that has a spring constant of k = 250 N/m. The block becomes attached to the spring and compresses the spring 12 cm before momentarily stopping.
 - a. Calculate the work done on the block by the gravitational force.

$$W_g = mgh = 1 (9.8)(0.12) = 1.18 J$$

b. Calculate the work done on the block by the spring force.

$$W_{S} = \frac{1}{2} k \left(\chi_{i}^{27} - \chi_{f}^{2} \right) = \frac{1}{2} (250) (-0.12)^{2}$$

$$= -1.8 \text{ J}$$

c. What is the speed of the block just before hitting the spring?

$$W_{net} = \frac{1}{2} m \left(y_F^2 - V_i^2 \right)$$

$$1.18 - 1.8 = \frac{1}{2} \left(1 \right) \left(- V_i^2 \right)$$

$$-2 \left(0.62 \right) = - V_i^2$$

$$V_i = \sqrt{2 \left(0.62 \right)} = 1.1 \frac{m}{s}$$