Phys101 – Sec # 40 Quiz # 11 (Chapter 14)	
)
1 (24)	/ 15.4

Name:

1- A cube of wood of side = 10 cm has a density of 700 kg/m³. As shown in the figure, the cube is held in equilibrium under water by a string tied to the BOTTOM of a container. Find the tension in the string.

$$\begin{aligned}
F_{\text{net}} &= ma^{\circ} \\
F_{\text{b}} - m_{0}g - T &= 0 \\
\Rightarrow T &= F_{\text{b}} - m_{0}g &= m_{\text{f}}^{\text{dist}}g - m_{0}g \\
&= f_{\text{b}} V_{0}g - f_{0} V_{0}g \\
&= (1000)(1\times10^{-3})(9.2) - 700(1\times10^{-3})(9.8)
\end{aligned}$$

$$\begin{aligned}
&\text{container} \\
V_{0} &= (0.1)^{3} = 1 \times 10^{-3} \text{ m}^{3}
\end{aligned}$$

2- An Aluminum block (density 2.7 g/cm³) has a weight W in air and has a weight W_{app} in water (density = 1 g/cm³) when completely submerged. If $(W-W_{app})$ is equal to 196 N, What is the volume of the block?

$$W_{aff.} = W - F_b$$
 $F_b = W - W_{aff} = 196 N = P_b V_0$
 $V_0 = \frac{196 N}{(1000 \frac{kg}{3})(9.6 \frac{m}{5})} = 0.02 m^3$