Quiz # 2 (Chapter 3)

Name:	 Key)	

ID#

1- The two vectors A and B shown in Fig. 1 have equal magnitudes of 10.0 m. Write the resultant vector, R, of these vectors in unit vector notation, find its magnitude and the angle theta it makes with the positive x-axis.

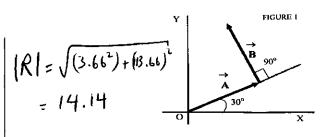
$$A_{x} = 10 \text{ Gs} 30 = 8.66$$

$$A_{y} = 10 \text{ Sin } 30 = 5$$

$$R_{x} = A_{x} + B_{x}$$

$$= 3.66$$

$$R_{y} = 10 \text{ Sin } 30 = 5$$


$$R_{y} = A_{y} + B_{y}$$

$$= 13.66$$

$$R_{y} = 10 \text{ Sin } 120 = 8.66$$

$$R_{z} = 3.66$$

$$R_{x} = A_{x} + B_{x}$$
$$= 3.66$$

$$\phi = \tan^{-1}\left(\frac{13.66}{3.66}\right) = 75^\circ$$

2- Consider two vectors \vec{A} and \vec{B} with magnitudes 5 cm and 8 cm, respectively. Vector \vec{A} is along the positive x-axis and vector \vec{B} is along the positive y-axis. Find \vec{A} . ($\vec{A} + \vec{B}$).

$$A = 5i$$
 $B = 8i$
 $A+B=5i+8i$

$$\vec{A} = 5\hat{i}$$
 $\vec{B} = 8\hat{j}$
 $\vec{A} = 5\hat{i} + 8\hat{j}$
 $\vec{A} = 5\hat{i} + 8\hat{j}$
 $\vec{A} = 5\hat{i} + 8\hat{j}$

3- Three vectors \vec{F} , \vec{v} and \vec{B} are related through $\vec{F}=5.0\left(\vec{v}\times\vec{B}\right)$. If vector $\vec{v}=3.0\,\hat{i}-5.0\hat{j}$ and $\vec{B}=-2.0\,\hat{k}$ Write the vector \vec{F} in unit vector notation.

$$\vec{F} = 5 (\vec{v} \times \vec{b}) = (30\hat{j} + 50\hat{i})$$