Chapter \# 16 (Oscillations)

1- A simple pendulum has a period of 3.0 s on the earth. What would its period be on the moon where $g($ moon $)=1.67 \mathrm{~m} / \mathrm{s}^{* *} 2$? [7.3 s]

2- An oscillatory mass-spring system has a total mechanical energy of 1 J , an amplitude of 10 cm and a maximum speed of $1 \mathrm{~m} / \mathrm{s}$. Neglecting friction, what is the mass ? [$2 \mathbf{~ k g}$]

3- A 5-kg mass attached to a spring executes a simple harmonic motion with a period of 2.0 s . If the total energy of the system is 10 J , the amplitude of oscillation (in m) is: [0.637]

4- A $0.4-\mathrm{kg}$ mass attached to a spring of force constant $40 \mathrm{~N} / \mathrm{m}$ vibrates with a simple harmonic motion of amplitude 10 cm . Calculate the shortest time that is taken by the mass to move from x $=0$ to $\mathrm{x}=10 \mathrm{~cm}$. [0.157 s]

5- A mass of 1.0 kg connected to a light spring of force constant $30 \mathrm{~N} / \mathrm{m}$ oscillates on a horizontal frictionless surface with magnitude 3 cm . Find the kinetic energy of the system when the displacement equals 2 cm . [7.5*10**(-3) J]

6- A simple pendulum has a length of 3.00 m . Determine the change in its period if it is taken from a point where $g=9.80 \mathrm{~m} / \mathrm{s}^{* *} 2$ to a higher elevation, where the acceleration due to gravity $\mathrm{g}=9.75 \mathrm{~m} / \mathrm{s}^{* *} 2$. [increases by 8.9 ms]

7- A 200 g mass is attached to a spring and executes simple harmonic motion with a period of 0.25 s . If the total energy of the system is 2 J , Find the amplitude of motion. [$\mathbf{1 8} \mathbf{~ c m}$]

8- If the amplitude of a system moving with simple harmonic motion is doubled, the total energy will be: [4 times larger]

9- A particle at the end of a spring executes simple harmonic motion with an amplitude of 4.0 cm . At what displacement (x) will its speed be equal to one half its maximum speed? [3.46 cm]

10- A particle of mass $\mathrm{m}=0.14 \mathrm{~kg}$ at the end of a spring executes a simple harmonic motion according to the equation: $x=0.2 \cos (10 t+p i / 2)$ Find the maximum potential energy of the spring.? [0.28 J]

11- At a certain instant, the displacement of a particle executing simple harmonic motion is 2.0 m , and its acceleration is $-6.0 \mathrm{~m} / \mathrm{s}^{* *} 2$. Find its frequency of oscillation. [$\mathbf{0 . 2 8} \mathbf{~ H z}$]

12- A simple pendulum of length 1.30 m makes 50.0 complete oscillations in 100 seconds on a certain planet. Find the acceleration due to gravity on this planet. [$12.8 \mathbf{~ m} / \mathbf{s}^{* *} 2$]

13- A $0.5-\mathrm{kg}$ box, connected to a light spring of force constant $20 \mathrm{~N} / \mathrm{m}$, oscillates on a horizontal frictionless surface. The amplitude of the motion is 3.0 cm . Find the speed of the box when its displacement $\mathrm{x}=2.6 \mathrm{~cm} .[\mathbf{0 . 0 9} \mathbf{~ m} / \mathbf{s}]$

14- A 3-kg block, attached to a spring, executes simple harmonic motion on a horizontal frictionless surface according to $x=2 \cos (50 t+3.14)$ where x is in meters and t is in seconds. Find the value of the spring constant. [$7500 \mathrm{~N} / \mathrm{m}$]

