Chapter \# 15 (Fluids)

1- A column of fluid, is open to the atmosphere at the top, and is 9.5 m high. If the density of the fluid is $1680 \mathrm{~kg} / \mathrm{m}^{3}$, what is the total pressure at the bottom of this column? [$2.58 * 10^{5} \mathrm{~Pa}$]

2- The velocity of the flow of water in a pipe is $4.5 \mathrm{~m} / \mathrm{s}$. If the pipe has a diameter of 8.4 cm , what is the mass of water coming out of the pipe per second? [$24.9 \mathrm{~kg} / \mathrm{s}$]

3- A pipe carrying water from the ground floor to the fourth floor of a building which is 13 m high. At the fourth floor the pipe has a cross-sectional area of $4.1^{*} 10^{-4} \mathrm{~m}^{2}$, a pressure of $1.66^{*} 10^{5} \mathrm{~Pa}$ and the velocity of water flow is $8.4 \mathrm{~m} / \mathrm{s}$. At the ground floor, the cross-sectional area of the pipe is $9.3^{*} 10^{-4} \mathrm{~m}^{2}$, What is the pressure in the pipe at the ground floor? [3.22*105 $\mathrm{Pa}]$

4- Water flowing at $4 \mathrm{~m} / \mathrm{s}$ in a non uniform circular pipe at point A. If the diameter of the pipe at point B is $1 / 2$ its value at A, what is the velocity of water at point B ? [$16 \mathrm{~m} / \mathrm{s}$]

5- A very small hole is made 1.0 m below the top of a large tank full of water. If the tank is open, what is the initial velocity of water coming out of the hole? [$4.4 \mathrm{~m} / \mathrm{s}$]

6- Find the minimum area of a flat ice slab 1 m thick if it is to support a 2000 kg car above sea water. (density of ice is $920 \mathrm{~kg} / \mathrm{m}^{3}$, density of sea water is $1020 \mathrm{~kg} / \mathrm{m}^{3}$) [20 m$\left.{ }^{2}\right]$

7- Consider an ice cube of 10 cm side and average density of $917 \mathrm{~kg} / \mathrm{m} 3$. What is the magnitude of the minimum force that one has to exert on its top surface to hold it completely submerged under water ? (the density of water $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$) [0.813 N]

8- A swimming pool of dimensions 30.0 m by 10.0 m has a flat horizontal bottom. When the pool is filled to a depth of 2.0 m with fresh water, what is the total force on the bottom surface of this swimming pool ? (assume the density of water to be $103 \mathrm{~kg} / \mathrm{m} 3$ and $\mathrm{Pa}=1.01 * 10^{5} \mathrm{~N} / \mathrm{m}^{2}$) $\left[3.6 * 10^{7} \mathrm{~N}\right]$

9- A blook of wood floats in water with 0.67 of its volume submerged. The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. When the same blook floats in oil, 0.90 of its volume is submerged. Find the density of the oil. [744 $\mathrm{kg} / \mathrm{m}^{3}$]

10- Water enters the first floor of a house through a pipe 2.0 cm in diameter and at an absolute pressure of $4 \times 10^{5} \mathrm{~Pa}$. The pipe leads to a second floor room , 5 m above, where the diameter is 1.0 cm . The flow velocity in the inlet pipe is $4 \mathrm{~m} / \mathrm{s}$. What is the flow velocity and pressure in the second room? [$16 \mathrm{~m} / \mathrm{s}, 2.31 \times 10^{5} \mathrm{~Pa}$]

11- A solid sphere has a weight of 10 N . When it is suspended from a spring scale and submerged in water, the scale reads 6.0 N . What is the radius of the solid sphere? (density of water is $1000 \mathrm{~kg} / \mathrm{m} 3$). [4.6 cm]

12- Water flows at a rate of $8.00 \mathrm{liter} / \mathrm{min}$ from a small hole at the bottom of a tank which is 0.900 m deep. Find the area of the hole. $\left[3.17 \times 10^{-5} \mathrm{~m}^{2}\right.$]

