1- A $2.0-\mathrm{kg}$ block is located on the x -axis 3.0 m from the origin and is acted upon by force $\mathrm{F}=8.0 \mathrm{i} \mathrm{N}$. Find the net torque acting on the block relative to the origin. [0.0 N.m]

2- Force $\mathrm{F}=(2.0 \mathrm{i}-3.0 \mathrm{j}) \mathrm{N}$, acts on a mass located at $\mathrm{r}=(0.50 \mathrm{i}+2.0 \mathrm{j}) \mathrm{m}$. Find the resulting torque (in N.m) about the origin. [-5.5 k]

3- Two objects are moving in the x, y plane as shown. The magnitude of their total angular momentum (about the origin O) is (in $\mathrm{kg} \times \mathrm{m} 2 / \mathrm{s}$): $[6 \mathrm{~kg} \times \mathrm{m} 2 / \mathrm{s}$]

4- Two disks are mounted on low-friction bearings on a common shaft. The first disc has rotational inertia I and is spinning with angular velocity w . The second disc has rotational inertia 2I and is spinning in the same direction as the first disc with angular velocity 2 w as shown. The two disks are slowly forced toward each other along the shaft until they couple and have a final common angular velocity of: [5w/3]

5- A wheel, mounted on a vertical shaft of negligible rotational inertia, is rotating at 500 rpm . Another identical (but not rotating) wheel is suddenly dropped onto the same shaft as shown. The resultant combination of the two wheels and shaft will rotate at: [250 rpm]
6. A 2.0 kg mass is attached to a string and fixed to a vertical rod (Fig 6). The mass is initially orbiting with a speed of $5.0 \mathrm{~m} / \mathrm{s}$ in a circle of radius 0.75 m . The string is then slowly winding around the vertical rod. What is the speed of the mass at the moment the string reaches a length of $0.25 \mathrm{~m} ?[15 \mathrm{~m} / \mathrm{s}]$

7. A mass ($\mathrm{ml}=5.0 \mathrm{~kg}$) which slides on a frictionless surface is connected by a light cord to a mass $(\mathrm{m} 2=4.0 \mathrm{~kg})$, as shown in Fig 7. The pulley (radius $=0.20 \mathrm{~m})$ rotates about a frictionless axle. The acceleration of m 2 is $3.5 \mathrm{~m} / \mathrm{s} * * 2$. What is the rotational inertia of the pulley? [$0.088 \mathrm{~kg} . \mathrm{m} * * 2$]
8. A solid ball, whose radius R is 10 cm and whose mass M is 8.5 kg , rolls smoothly from rest down a 25 deg inclined plane whose length L is 5.0 m . What is the speed of the center of mass of the ball when it reaches the bottom of the inclined plane? [$5.4 \mathrm{~m} / \mathrm{s}$]
9. A 2.5 kg block travels around a 0.50 m radius circle with an angular velocity of $12 \mathrm{rad} / \mathrm{s}$. Find the magnitude of the angular momentum of the block about the center of the circle.[7.5 $\mathrm{kg} . \mathrm{m}^{* *} 2 / \mathrm{s}$]
10. An object of mass $m=100 \mathrm{~g}$ and velocity $=\mathrm{Vo}$ is fired onto one end of a uniform thin rod ($\mathrm{L}=0.4 \mathrm{~m}$, $\mathrm{M}=1.0 \mathrm{~kg}$) initially at rest. The rod can rotate freely about an axis through its center (O). The object sticks to the rod after collision. The angular velocity of the system (rod + object) is $10 \mathrm{rad} / \mathrm{s}$ immediately after the collision. Calculate Vo. [8.7 m/s]

