Chapter 11 (Rotation)

1- A disk of radius 20 cm rotating at $42 \mathrm{rad} / \mathrm{sec}$ stops (assume constant deceleration) after 10 sec. Through how many radians does the disk turn during this time? (A: 210 rad)

2- A disk is rotating about an axel through its center O when two forces $\mathrm{F} 1=$ 10 N and F2 $=15 \mathrm{~N}$ are applied on it as shown in Fig. The moment of inertia of the disk about O is $0.036 \mathrm{~kg} . \mathrm{m}^{* *} 2$. If the system starts from rest, find the angular speed at time $=3.0 \mathrm{~s}$. (A: $100 \mathrm{rad} / \mathrm{s}$)

3- A torque of $80 \mathrm{~N} . \mathrm{m}$ applied to a pulley increases its angular speed from $45 \mathrm{rev} / \mathrm{min}$ to 180 $\mathrm{rev} / \mathrm{min}$ in 3 seconds. Find the moment of inertia of the pulley?

4- A wheel has a moment of inertia $12 \mathrm{~kg}^{*} \mathrm{~m}^{* *} 2$ about its axis of rotation. As it turns through 5.0 rev, its angular velocity increases from $5.0 \mathrm{rad} / \mathrm{s}$ to $6.0 \mathrm{rad} / \mathrm{s}$. If the net torque about the axis of rotation is constant, its value is: (A: $2.1 \mathrm{~N}^{*} \mathrm{~m}$)

5- A disk has a moment of inertia $6.0 \mathrm{~kg}^{*} \mathrm{~m}^{* *} 2$ about a fixed axis of rotation. It has a constant angular acceleration of $2.0 \mathrm{rad} / \mathrm{s}^{* *} 2$. If it starts from rest, the work done during the first 5.0 s by the net torque on it is: (A: 300 J)

6- A wheel, starting from rest, turns through 8.0 revolutions in a time interval of 17 s . Assuming constant angular acceleration, what is the angular speed of the wheel at the end of this time interval? (A: $5.9 \mathrm{rad} / \mathrm{s}$)

7- Four identical particles, each with mass m, are arranged in the xy plane as shown in figure. They are connected by light rods to form a rigid body. If $\mathrm{m}=2.0 \mathrm{~kg}$ and $\mathrm{a}=1.0 \mathrm{~m}$, the moment of inertia of this system about the y-axis is: (A: $12 \mathrm{~kg}^{*} \mathrm{~m}^{* *}$)

8- A wheel with a moment of inertia of $5.0 \mathrm{~kg}^{*} \mathrm{~m}^{* *} 2$ and a radius of 0.25 m rotates about a fixed axis perpendicular to the wheel and through its center as shown in figure 10. A force of 2.0 N is applied tangentially to the rim. As the wheel rotates through one revolution, what is the work done by the force? (A: 3.14 J)

9 - A uniform rod of length $\mathrm{L}=0.98 \mathrm{~m}$ and mass $\mathrm{M}=3.0 \mathrm{~kg}$ is free to rotate on a frictionless pin through one end (See Fig). The rod has an angular speed of 4.0 $\mathrm{rad} / \mathrm{s}$ when it was in the horizontal position. What is the angular speed at its
 lowest position? (A: $6.8 \mathrm{rad} / \mathrm{s}$)

10- The four particles in Fig (6) are connected by rigid rods of negligible mass. Calculate the moment of inertia of this system about the xaxis. (A: $\left.63 \mathrm{~kg} . \mathrm{m}^{* *}{ }^{(}\right)_{(-2,3)}$

