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ABSTRACT 
 
What is the effect of memory on fluids in porous media when predicting oil flow 
outcomes? Newtonian fluid flow equations have been considered the ideal models for making 
predictions. Even non-Newtonian models focus on what is immediately present and tangible in regard 
to fluid properties. This paper argues that the intangible dimension of time and other fluid and media 
properties have not been fully considered in existing models of fluid flow. The memory of fluid is the 
most important and most neglected feature in considering fluid flow models, since it represents the 
history of the fluid and how it will behave in the future.  Models do not yet exist for true memory 
consideration. This paper reviews existing fluid flow models with memory, addresses the intangible 
problems of memory, and identifies the effects of considering memory and other properties such as 
stress, viscosity, surface tension, temperature etc.  This review of the literature on memory as an 
important variable in predicting oil flow, critically reviews the existing models and introduces a 
relation of fluid viscosity, memory and permeability of media with stress to describe the behavior of a 
fluid in porous media. This idea can be used in the understanding of visco-elastic fluid flow behavior 
in the reservoir.     
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INTRODUCTION 
 
In literature notions of human memory are often associated with the flow of time. In nature 
groundwater, oil, gas and other naturally occurring fluids pick up and drop off all manner of various 
materials. The conventional approach in reservoir engineering has focused on the permeability of 
solid and semi-solid structures encountered by the flow of the fluid.  What it doesn’t do is follow 
these pathways. Fluid memory is an approach to factor this back in by switching the frame of 
reference from the external observation of flow to that of matter-molecules-within the flow. Some 
nonlinear, incompressible and viscous fluids possess some peculiar characteristics that suggest there 
are other properties in viscous fluids. The phenomenon that describes these special characteristics 
with time is stated as memory in fluid. There are very limited studies in the literature that describe this 
phenomenon clearly. Several non-Newtonian fluids behave chaotically at the time of flow through 
porous media especially in some geothermal areas. As time passes, this chaotic behavior results in 



some precipitation of fluid minerals in the pore space thus squeezing the flow path in the reservoir. 
However, some fluids may react chemically with the medium, enlarging the pores. Some fluids carry 
solid particles that may obstruct some of the pores. Pore size may also be changed by the minerals 
precipitated by the fluid and, finally, by temperature variations induced by the flux. These phenomena 
create a spatially variable pattern of mineralization and permeability changes that can occur locally. 
Local permeability changes are of particular interest in geothermal studies. If it is considered that 
permeability diminishes with time, it is clear that the effect of fluid pressure at the boundary on the 
flow of fluid through the medium is delayed, and that the flow occurs as if the medium has a memory 
as well. In fluid memory, the filtering properties of the diffusion equation are altered relative to the 
corresponding equation based strictly on Darcy’s law. The memory formalism then acts as a filter on 
the spectral properties of the fluid mass flow; the filter increases the low-frequency content and 
decreases the high-frequency content. The effect of the filter is increasingly more severe with larger 
values of relaxation time. It may be concluded that although other causes such as heterogeneity, 
anisotropy and inelasticity of the matrix, may be invoked to interpret certain phenomena, the memory 
mechanism could help in interpreting part of the phenomenology. Due to the inadequacy of current 
theories in accounting for memory, some authors (Hu and Cushman, 1994) also developed non-local 
flow theories using general principles of statistical physics under appropriate limiting conditions from 
which the classical Darcy’s law is derived for saturated flow. This paper reviews existing fluid flow 
models, addresses the problem of memory and identifies the impact of considering memory on stress-
strain relation. 
 
CRITICAL LITERATURE REVIEW  
 
The critical review is based on how the memory of a fluid corresponds to a property and how this 
property is correlated with other more conventionally understood properties of the fluid and media. In 
this review, the media encompassing fluids are all porous and none of the models represent the true 
behavior and relationship of fluid and media properties with memory. As Table 1 indicates, research 
has tended to linearize the assumptions of available models. 
 
Slattery (1967) studied viscoelastic fluid behavior with the Buckingham-pi theorem using the Ellis 
model fluid, power model fluid, Noll simple fluid and a Newtonian fluid. He pointed out that memory 
effects i.e. normal stress effects, represent the rate of deformation tensor as a function of the extra 
stress. In porous media, the memory effects are described in terms of permeability a change which is a 
function of the characteristic length of the system, the magnitude of the characteristic velocity, and the 
material parameters. He only showed these parameters as permeability functions. The material 
parameters are assumed to depend only upon the local thermodynamic state. These are normally 
viscosity, stress and diffusivity of the fluid. However he did not present any model which represents 
the whole scenario of the behavior. 
 
Mifflin and Schowalter (1986) presented a technique to solve three-dimensional steady flows of 
memory integral fluids in enclosed or open flow systems. They consider the flow of a corotational 
Jeffrey’s fluid as a sphere. They consider force and torque free laminar flow. They broke down the 
integral part of memory into velocity gradient which does not represent the true memory. They 
continued the calculation until the memory of the fluid decomposed sufficiently whereas the rest of 
the integral can either be neglected or set to a small constant value. They concluded that the 
noncirculating fluid having memory tends to remain farther from the sphere surface than in the 
Newtonian case. This model represents the relationship between fluid viscosity and stress tensor with 
time only. 
      
Ciarletta and Scarpetta (1989) were concerned about the linearized progress for an incompressible 
fluid flow equation whose viscosity displays a fading memory of the past motions. They linearized by 
neglecting the non-linear convective term of the model. They considered a symmetric velocity 
gradient at every past instant to see the present status of stress. They only consider viscosity of a fluid 
as a function of stress with memory. 



Eringen (1991) developed a nonlocal theory of memory dependent micropolar fluids with 
orientational effects. Orientational and nonlocal effects near the walls change viscosity drastically if 
polymeric fluids are squeezed in microscopic sizes. When channel surfaces are adsorbed with polymer 
layers, viscosity becomes a function of the channel gap. He pointed out that all fluids have internal 
structures with some internal characteristic length (such as radius of gyration) in microscopic scale. 
This length becomes comparable with the external characteristic length (such as channel depth) which 
leads to the concept of memory of a fluid. Nonlocal memory-dependent micropolar fluids have 
essential rotational degrees of freedom and twist inertia. These fluids are affected by couple stress, 
body couples and long-range interactions. He concluded that the memory effects become significant 
when the external characteristic length  becomes small enough to compare with the average radius of 
the gyration of molecular elements of fluids. Such a situation arises in the case of thin film 
lubrications. He included the memory with stress and viscosity of fluid only.  
 
Nibbi (1994) introduced a relationship with free energies relating to viscous fluids with memory.  He 
also considered the quasi-static problem associated with viscous fluids with memory. He pointed out 
recent investigations performed on the determination of free energies for linear viscoelastic fluid. 
However, models characterizing viscoelastic fluids with memory are still unknown. For a linear 
isotropic, homogeneous, incompressible viscoelastic fluid, the constitutive equation is characterized 
by the symmetric stress tensor equation to represent fluid memory. It is unrealistic to consider such 
fluids. He mentions nothing about media as well, the real feature of memory 
 
Broszeit (1997) dealt with the numerical simulation of steady state isothermal flow for liquids with 
memory in a Newtonian fluid. He applied a single-integral constitutive law, assuming that the fluid 
kinematics are known. He showed how the deformation histories of the fluid pathway play a role in 
the behavior of simulation. He tried only to describe and solve the memory of a fluid problem with 
stress. Practically memory is function fluid and media properties with time. 
 
The memory of a fluid can be defined as a derivative of fractional order simulating the effect of a 
decrease of the permeability in time (Caputo, 1999). He briefly discussed the contribution of different 
researchers to the basic equations used to study fluid diffusion in porous media. These authors 
contributed various forms for setting equations that rigorously represent the interaction between an 
elastic porous medium and the flow of fluid through it, and obtaining solutions for the equations in 
many interesting cases. All the above-mentioned types of fluid flow imply that the permeability of the 
medium varies with time. The author investigated some geothermal areas where the fluids may 
precipitate minerals in the pores of the medium, thus diminishing their size. To study the flow of these 
fluids he modified the Darcy’s law by introducing a memory formalism represented by a derivative of 
fractional order simulating the effect of a decrease of the permeability in time. He did not relate the 
fluid memory with other properties of fluid and did not show how this property plays a role in porous 
media. However, Caputo (1999) acknowledged that the memory of fluid in porous media can be 
described more extensively and accurately if the Darcy model is replaced by other appealing models 
which describe the media and fluid accurately.     
 
Li et al. (2001) investigated some characteristics in non-Newtonian fluids. They identified the 
interaction and coalescence due to stress and their relaxation due to fluid memory. Their results 
suggest clearly that a new mechanism should be discovered for interactions and coalescence in non-
Newtonian fluids. The memory effect of residual stresses holds the shear-thinning process during a 
certain time so that the local viscosity decreases. The memory effect irritates either interactions, 
through pure acceleration of rise in velocity, or coalescence at shorter injection periods between 
bubbles. Their model does not clearly describe or visualize the true feature of fluid memory. They did 
not include the properties of fluid and media with memory. 
 
Arenzon et al. (2003) studied a nonlinear diffusion model which describes density relaxation of 
densely packed particles under gravity and thermal vibration. They found a jamming transition line 
between a low-density fluid phase and a high-density glassy regime, characterized by diverging 
relaxation time and logarithmic or power-law compaction according to the specific form of the 



diffusion coefficient. They showed history-dependent properties such as quasi-reversible–irreversible 
cycle and memory effects. They mentioned that memory phenomenon is a history dependent 
phenomenon. They included the perturbation to describe the memory of a fluid. They also pointed out 
that a memory is related to perturbations at early times. They concluded that the memory effects are 
simpler than their glassy counterpart and can be described in terms of the density profile properties. 
They did not consider other properties of fluid except density to describe the notion of memory based 
on a quasi-static flow regime. However, their model does not represent whole scenario of fluid 
memory.  
 
Shin et al. (2003) studied the non-equilibrium mechanism in the transport of inertia-dominated 
particles. They explained the problem of particle deposition inside a turbulent boundary layer. They 
pointed out that a turbulent boundary layer is seriously affected by a non-equilibrium memory effect 
due to the inertia of particles and mean shearing of the carrier flows. While maintaining a partial 
memory of their earlier motion, part of the mean and fluctuating velocities at previous times are 
activated. This is called the non-equilibrium memory effect. The memory effect is sensitively 
dependent on the intermediate diffusion time scale and this has to be chosen depending on the 
characteristic time scale of the mechanism of interest. This model is for homogeneous surrounding 
media and is not sufficient to describe the full impact of fluid memory on flow behavior and in media. 
 
Zhang (2003) studied the linkage between microscopic car-following and macroscopic fluid-like 
behavior of traffic flow. He found that driver memory in car-following guide the viscous effects in 
continuum traffic flow dynamics. The phenomena generated by traffic flow is established when he 
developed a second-order continuum viscosity model with memory. His models that attempt to 
describe the system have a role in explaining certain aspects of the system. The model contains traffic 
viscosity and is linked to driver memory. Memory is a function of time and space and forward time 
events depend on previous time events. Road car traffic model is the basis of his model. His model is 
fictitiously compared  with road car traffic model and the true nature of fluid memory in a media. 
 
Lu and Hanyga (2005) studied Biot’s theory and the Johnson–Koplik–Dashen dynamic permeability 
model in wave field simulation of a heterogeneous porous medium. They addressed the time domain 
drag force expression of the model to express in terms of the shifted fractional derivative of the 
relative fluid velocity. The governing equations for the two-dimensional porous medium are reduced 
to a system of first-order differential equations for velocities, stresses, pore pressure and the 
quadrature variables associated with the drag forces. These variables represent the memory variables 
satisfying first-order relaxation differential equations. They did not show how the memory is likened 
with these properties. They tried to correlate the memory effect with ultrasound and seismic wave 
propagation with drag force. They concluded that the memory effect for the drag force should be 
expressed in terms of a time convolution with a singularity 21−t for 0→t . However, they tried to 
establish evidence of experimental and theoretical findings at 0→t  which is not real.  
 
Mobilization and subsequent flow in a porous medium of a fluid with a yield stress can be explained 
well when the notion of memory is introduced (Chen et al., 2005). Here the modeled fluid behavior is 
a Bingham plastic using single-capillary expressions for the mobilization and flow in a pore-throat. To 
incorporate dynamic effects due to the viscous friction of mobilization, researchers introduced the 
concept of invasion percolation with memory (IPM). This concept explains the macroscopic threshold 
(minimum pressure gradient) which directly follows from the geometry of the path, along which 
mobilization first occurs. The minimum threshold path (MTP) is connected through nearest 
neighboring paths between two given boundaries (or points), along which the sum of thresholds is the 
minimum possible. Fundamental to this concept is the notion that specific, local thresholds must be 
exceeded across a given pore throat. Within this threshold, the fluid is to be mobilized, and these 
thresholds are distributed in the network. IPM addressed static properties of various problems with 
yield stress. These are the onset of the mobilization of a single-phase Bingham fluid in a porous 
medium, or foam formation and propagation in porous media in the absence of flow effects. However, 
it did not account for dynamic (viscous flow) effects of fluid by which mobilization occurs. In their 



calculations, flow in an open path did not affect the distribution of pressure, so the identification of 
higher-energy paths was strictly a static (quasi-thermodynamic) process. In the case of Bingham 
fluids, this would correspond to a vanishing plastic viscosity. They explained how IPM works, 
however they did not construct a model which represents the notion of fluid memory.   
 
Gatti and Vuk (2006) studied the motion of a linear viscoelastic fluid in a two dimensional domain 
with periodic boundary conditions for the asymptotic behavior. They consider an isotropic 
homogeneous incompressible fluid of Jeffrey’s type where the Reynolds number is equal to one. They 
also assumed that density is independent of time. They calculated the memory effect by also assuming 
that pressure and velocity are independent of time. These assumptions follow the conventional 
models.  
 
Figure 1 shows the effects on viscosity of PS – Cyclohexane solution (after PS – polystyrene had 
absorbed on the mica surfaces of the channel) when memory is considered (Eringen, 1991). He 
matches his theoretical data with experimental results. He mentioned that the further interest to 
observe his theory accounts for the orientational changes of the molecular alignments with time. This 
means that the evaluation of the anisotropy in the flow with micro motions can be determined by 
solving field equations. 
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Figure 1: variation of body force with external characteristic length when memory is considered 
(redrawn from Eringen, 1991) 

 
 
 

Table 1 shows the different available existing models that have critically reviewed with their 
assumptions.  



Table 1: Comparison of memory models  
 

Model References Assumptions 
( )ατμ ,,,,,, 0 PtvLfK =   

K = permeability of the system 
v  = velocity 
t = Time 

0μ  = viscosity  
P = Pressure 
τ  = stress tensor 
α  = diffusivity  

Slattery,  
(1967) 

1) Steady state  incompressible flow 
2) Isotropic porous media 
3) Neglect inertia effects 
4) The parameters depend only upon local 

thermodynamic state 
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τ = stress 

0η  = zero shear rate viscosity 
t = present time 
t’ = some past time 

1λ  = relaxation time 

2λ  =  retardation time 

Mifflin and 
Schowalter 
(1986) 

1) Steady state  incompressible flow 
2) Homogeneous (spherical shape) fluid 

particles 
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T = stress 
D  = velocity gradient 
t = Time 
Ω  = domain of physical space 
        (i.e. 3R≡ ) filled by moving fluid  
=T fixed positive number, ( )+∞≤  

P = Pressure 
( )τμμ =  = relaxation modulus of the      

                    viscosity 

Ciarletta 
and 
Scarpetta, 
(1989) 
 

1) Neglect non-linear convective term 
2) Homogeneous, incompressible and 

viscous fluid 
3) Smooth and bounded domain of physical 

space  
4) Based on simple solid material 
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Eringen, 
(1991) 

1) Non heat conducting fluid 
2) Nonlocal effects are negligible 
3) Homogeneous (spherical) molecules  
 

 
 



Table 1: Comparison of memory models cont’d….. 
 

Model References Assumptions 

klt = stress tensor 

1010 ,,, μμλλ  = viscosity  moduli 
t = Time 
σ  = spin density  
δ  = orthogonal tensor 
τ  = dummy time variable  
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2 μ ,  

T = symmetric stress tensor 
D  = infinitesimal rate strain tensor 
t = Time 

tD  = history of D  up to time, t 
( ) ( )stDsD t −==   

P = Pressure 
( )τμμ =  = relaxation modulus of the 

viscosity 

Nibbi, 
(1994) 

1) Linear isotropic, homogeneous, 
incompressible and viscous fluid 

2) The relaxation function has to be satisfy; 
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( typ , )= Fluid pressure with time 

oρ = density of the fluid in the undisturbed 
condition 
η = Ratio of the pseudo-permeability of the 

medium with memory to fluid viscosity 
α  = fractional order of differentiation 
t = Time 
u = fluid velocity in the plane of the integral 

( )α−= 1z  = Definition to simplify the 
computations 

K = Permeability of the system  
P = Pressure 
q = fluid mass flow rate per unit area 

Caputo, 
(1999) 

1) Linear isotropic, homogeneous, 
incompressible and viscous fluid 

2) Permeability diminishes with time only  
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m

dt
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=mτ mean stress in a cell, pa 
=mγ& shear rate due to residual stresses, s1  
=Bγ& shear rate due to the passage of 

bubbles, s1  
=βα , Constant determined by the 

rheological simulation under different 
conditions of fluid and bubble volume 

Li et al., 
(2001) 

1) Homogeneous (spherical shape) bubble 
2) Homogeneous stresses and composition 
3) A constant formation frequency 



Table 1: Comparison of memory models cont’d….. 
 

Model References Assumptions 
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eqtv , equilibrium turbophoretic velocity 

=Δ +
tv non-equilibrium turbophoretic 

velocity with memory 
=epR Reynolds number 

=DC drag force 
=τ relaxation time 
=βτ relaxation time scale required to reach 

a local equilibrium state of the 
particle Reynolds stress 

=yyζ Maxwell distribution parameter 

=yyD coefficient 

=*u friction velocity 

Shin et al., 
(2003) 

1) Stokes drag force particle motion  
2) The variation of mean shear rates of both 

the phases is unrelated  
3) Fluctuating velocities of particles is 

Gaussian  
4) The long-time diffusivity of turbulent 

particle is independent of mean shearing 
of the carrier flow field 

5) Homogeneous medium  
6) Independent of the mean shear rate of the 

flow. 
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=ρ traffic density 
=β a parameter that describe memory 
=τ relaxation time 
=v traffic velocity 
=μ viscosity of traffic fluid 
=c concentration of fluid 

Zhang, 
(2003) 

1) Isotropic media 
2) Taylor series expansion is considered 
3) Road car traffic model is the basis 
4) The generic, monotonic function, *G is 

assumed as linear function 

 
 
STRESS RELATION WITH MEMORY  
 
As the preceding literature review suggests, attempts to account for fluid memory is a relatively 
intangible formulation of the observable effects of some underlying physical process. In terms of 
other well-understood, more or less tangible physical phenomena associated with fluid flow, 
researchers attempting to broaden these boundaries have encountered many difficulties. Recently 
Hossain et al. (2006) have theorised a relationship between fluid properties and media properties, 
incorporating fluid memory. This theory describes the role of stress with strain when the effects of 
fluid properties such as viscosity, density, diffusivity and compressibility of fluid with fluid memory 
are added. The media properties such as surface tension, porosity and permeability are also considered 
to describe the combined effects of both fluid and media properties with the notion of memory of a 
fluid. Finally incorporating temperature and pressure effects, the stress strain relation shows such 
Equation 1 which is presented below. The shear stress and shear rate of strain becomes: 
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The above mathematical model implies the almost all possible fluid and fluid media properties. If we 
consider permeability of media and compressibility of fluid does not change with time, Equation 1 
can be written as: 
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The above equation reduces to: 
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Equation (2) is solved to investigate the combined effects on stress strain. 
 
  
RESULTS AND DISCUSSION 
  
In this section, we have used FORTRAN programming to solve the equation (2). For numerical 
simulation, API 28.8 gravity crude oil is used. To solve the equation, xzA = 1.0 2m ; 

9102473.1 −×=c pa1 (=  0.0000086 psi1 ); =E  85.2 KJ/mol; h = 1.0 m; 15100.30 −×=k m2; Ma 
= 3.98; =Δp 150.0 N/m2; R = 0.008314 kJ/mol-K; =ΔT 75.0 0K; 10 <≤α ; y = 1.0 m; 

71075.6 −×=Dα sm2 ;  3
0 104.87 −×=μ Pa-s at 298 0K (25 0C); φ  = 30%; dydux  = 0, 0.1, 0.2, 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0; oρ = 645.1 3mkg  at 298 0K (25 0C); η = 0.343249; T∂∂σ = 
0.165293 have been considered. In equation (2) one of the fluid memory part in the denominator (the 
integral part) is varied (I = 0.5, 0.3, 0.1, 0.09, 0.08, 0.03) to investigate how memory effect plays a 
role on fluid behavior. Similar data is also used by Lu et al. (2005) for their model. 
 
 
Figure 2 shows the variation of stresses with rate of strain when memory is considered with other 
fluid and media properties. The stress-strain relation for Newton’s law of viscosity has been 
presented. Initially stress increases gradually with the rate of strain. This trend follows up to a strain 
rate of 0.7. However, beyond this point, stress increases rapidly with a slide change of rate of strain. It 
is observed that, when the effect of memory on a fluid goes down, the shape of the curve is closer to 
the Newtonian type. This indicates that if the memory of fluid and media is ignored for any fluid or 
media, the behavior looks like Newtonian type of fluid except its nonlinearity. However, due to other 
effects on stress-strain, the shape of the curve is almost exponential or any power series polynomial 
type which indicates the nonlinearity of the behavior of fluid and porous media.  The trend of the 
curve is almost similar with Figure 1. This indicates that the proposed model is a good agreement with 
Eringen model.        
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Figure 2: Stress variation with rate of strain with memory for a crude oil 

 
 
CONCLUSION 
 
The literature to date has yet to conceptualize fluid memory in a comprehensive way. The particularity 
and uniqueness of memory – its definition varies with different combinations of any given fluid and 
its particular medium – has posed the greatest difficulty. Memory itself is a function of all possible 
properties of the given fluid and its medium over time. When memory, fluid and media properties are 
considered simultaneously, the stress-strain trend is nonlinear, rather than a linear function. Another 
outstanding challenge is the understanding and formulation of effects and behavior of a memory-
induced fluid in porous media. As a starting-point, some dependence on complex phenomena of the 
fluid and some relationship to fluid viscosity and density may be hypothesized. In porous media, there 
are drastic effects on permeability with time. A comprehensive description of fluid behavior awaits 
fuller elaboration of new sets of relations between fluid viscosity and memory. 
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NOMENCLATURE 
 

xzA = cross sectional area of rock perpendicular to the flow of heat,  2m  
c = total compressibility of the system, pa1  
=E Activation energy for viscous flow of 28.8 API gravity oils, KJ/mol  

h = Length in temperature gradient (i.e. Length between the two points along the y- direction), m 
k = Permeability of the system, md 
Ma = Marangoni number  
( typ , )= Fluid pressure, N/m2

=−=Δ 0ppp T Pressure difference, N/m2

R = universal gas constant, kJ/ mol-K 
T = Temperature, 0K 

0TTT T −=Δ , 0K 
t = Time, sec 
ux, = fluid velocity in the direction of x , sm  
y = Distance from the boundary plan, m 
σ   = Surface tension,  

Dα   = Thermal diffusivity, sm2  

0μ  = fluid dynamic viscosity, cp 
α  = fractional order of differentiation 
φ  = porosity of fluid media 

Tτ  = Shear stress at temperature T, 0K 

dy
dux  = Velocity gradient along y-direction, msm  

=ξ  Dummy variable for time i.e. real part in the plane of the integral 

oρ = density of the fluid, 3mkg   
η = Ratio of the pseudo-permeability of the medium with memory to fluid viscosity    

T∂∂σ = The derivative of surface tension σ  with temperature and can be positive or    negative 
depending on the substance 
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