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ABSTRACT

Pattern geometries have been used extensively in Reservoir Engineering, to evaluate sweep efficiency and various
improved hydrocarbon recovery processes.

A curvilinear grid is generaily preferred to avoid the grid orientation problems associated with rectangular systems
as well as to handle anisotropy. ) ;

The method presented here caiculates a curvilinear grid for a one-cight (1/8) of a five-spot pattern. The symmetry of
pattern geometry is used to determine the remaining coordinates. . -

The conversion of dimensionless coordinates to actual ones is based on L, the half length of the five-spot pattern.
The curvilinear gird points discussed in this paper are located at the intersection of corresponding streamlines and iso-
potentials.

The point of intersection is determined numerically. The Newton-Raphson technique is used to solve the system of
equations describing the streamline and iso-potential functions. The spacing between iso-potential lines may be equal
or logarithmic spacing.

Introduction

The problem of gridding is widely discussed in the open literature. Aziz [1] gave an overview
which may be considered as the state of the art at the time of its publication. A more recent
statement on girding; albeit a brief one, may be found in Watts paper [2]. Sharpe 3] in a recent
publication dealt with the general gridding systems by analogy with radial elliptical and other
grids. Other authors [4,5] have recently presented gridding methods based on streamlines that
can be used for upscaling or basic reservoir simulation. The present work discusses specifically
a special purpose curvilinear grid system generations for pattern injection.

The program presented in this paper calculates (X,y) coordinates of grid points in a curvilinear
system. These grid points are the intersection of (M+1) streamlines with (N+1) iso-potential lines. -
Morel-Seytoux’s [6] equations describing the streamline functions and the equipotential functions
at any point are solved using Newton-Raphson technique to determine their point of intersection.
The detailed formulations to calculate these points for 1/8 of a 5-spot pattern are presented in the

following paragraphs.
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Formulation Of The Problem

A Fortran program has been developed to determine curvilinear grid systems for a pattern *
geometry. More specifically for a one-eight (1/8) of a five-spot pattern.

Given a set of streamlines (y 's) and iso-potentials (¢ 's), grid blocks are determined by the
intersection of the streamlines and iso-potentials as shown in Figure 8 of Reference [6].

The problem here is to find the x and y coordinates of each intersection away from discontinuities.
For a repeated five-spot pattern, the real iso-potential function ¢ (x,y). and the streamlines function
V (x,y) are reported by Morel-Seytoux [6] as : '

o 1 [1-CnPx Onfy

0 r‘"(“m——miy— ®
vy = L . Sny Dny Cnx

YY) = o (Snx Dnx Cny @)

Figure 1 is based on Figure 8 from Reference [6]. The distance AB indicated in Figure 1 is taken

to represent r,, or wellbore radius. The grid system is started at point B to avoid the discontinuity

at A. The iso-potential along arc BC is given by Equation (1). The streamline function of each
- streamtube cutting arc BC can be determined from Egquation (2).
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Figure 1. Pattern Geometry Showing Streamlines and Isopotentials
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If the x, y coordinates of points Bl and B2, from figure 1, are known then ¢ (x,y) and y (x,y)
can be calculated from Equations (1) and (2), respectively. The problem here is to find the X, ¥
coordinates of the intersection point B3, that is given B1(x1, y1) and B2(x2. y2) find
B3(x3, ¥3), knowing that ¢ (x1, y1) = ¢ (x3, y3) and y (x2, y2) = y (x3, y3).

In general, if i is the i’th streamline or streamtube and j the j’th iso-potential line, the coordinates
x and v of the intersection between i and j can be determined by solving the following system of
equations :

v (-1, j) = v (i)

o3, j-1) = y(i)j)
This system of equations may be solved using the Newton-Raphson technique.

Mathematical Model

Equations (1) and (2) are rewritten such that :
Fi(x, y) = et= % [Cx_xzx + Cn?%] + Cn? Cn%-1 3)
F,(x,y) = tan [2n y(x,y)] Snx Dnx Cny - Sny Dny Cnx 4)

Let K, = e*®* Y and K, = tan [21 vy (x, y)] for convenienc:.
Let R(x) be the residual vector where
X = (xy) and R(X) = (F\(x,y), F, (x,y))
The solution to R(X) such that :
RX) = 0 (5)
Is obtained in two steps :
R(X¥)
RC)

1) Xkd»l - Xk -

Here XX is the value of X at the k’th iteration level and R’(X) is the Jacobian Matrix that is :

k
aR(X¥) -

R'(Xk) = axk

R(x*)

R (X“) @)

Let8X = X** - X* = -

or

R(X¥) = 8XR'(XY) ®)
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2) The second step of this procedure is to solve the linear system of equations depicted by
Equation (8) :

IFy) IFEY)
X ay Ax ‘ "Fl(xs y)
- = )
oF(xy) dRhKXY)
ox ay Ay -FZ x, Y)
The analytical derivatives of F,(x, y) and F,(x, y) with respect to x and y are given below :
éf-‘g—':ﬂ-)- =-2(K, + Cn?y) Cnx Snx Dnx (10)
Eg—’}-’-)- = -—2(K, + Cn?x) Cny Sny Dny (11
Q-F—"é-:—ﬁ =K, Cny Cnx (Dn’x - K, Sn’x) (12)
aF‘.’. (X, Y) ) { 2 ' 2
% = K, Snx Dnx Sny Dny + Cny Cnx (Kz Sn‘y - Dn‘y) 13)
From Equation (9), we have :
oF; (x,Y) oF (%, y)
e Ax+ = Ay = -R(xy) : (14)
dF, (X, y) doF, (x,y)
—alg ——’-ay—— 4y = -F,(x,y) ; (15)
After multiplying Equation (14) by ingx_’i'll and Equation (15) by QF%’-’Q and simplifying

one can solve for Ay first as follows :

JF, (3 oF.
—'—g—:—’y—)-Fz(x,y)-—-%;x’—}Q-Fl(x,y)]

Ay =
Y= ToR(vy) R(y) _dF(%y) dREY)
x oy dy = o

Ax is then computed from either Equation (14) or (15). For example :
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[‘Fz (x,y) - F2l8y) ;;’ 2L AY]

dF, (x,y)
ox

AX =

The program checks whether QEL%Y—) is zero before using Equation (14).

The overall solution procedure is now outlined :
(i) An initial guess is made for the unknowns x and y.
(i) A check is made to see if R(X) the residual vector is smailer thana specified tolerance.
@iii) R’(X) and R(X) are computed as a function of the primary unknowns given in the
first step above. Then, Equation (8) is solved for dx.
(iv) Given 8x update X such that X**! = X* + 5X and record tha maximum difference
that is : a
X+t Xkme . (16)
Check whether Equation (16) is smaller than a specified tolerance. If so, convergence has been
achieved and the computation is terminated. If not, one goes to the next step.

(v) X**1is now the new guess and the procedure is restarted from the first step.

Discussions And Results

The present program has been written in single precision. The accuracy under these conditions .
is considered sufficient.
The convergence criteria utilized are :

(1) Both F\(x, y) and F,(xy) are lsss than or equal to 10 and
@) X -X4 < 10°

Convergence is generally achieved in five to six iterations as long as one stays away from the
discontinuities at A and DE as shown in Figure 1.

There are two choices for delineating the iso-potential lines along BD (Fig. 1)

IOPT = 1 is for an equal spacing while,

IOPT = 2 is for a logarithmic spacing allowing more grid cells near the wellbore as shown
in Figure 1.
The program computes the intersections coordinates in the area BCDE.
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The symmetry of pattern geometry is utilized to determine the coordinates of the intersections in
area DEFG shown in Figure 1.

The only data required to run this f)rogram are ;

M = number of grid cells between streamtubes.

N = number of grid cells between iso-potential lines.

IOPT = 2 for a logarithmic spacing between iso-potential lines.

IOPT # 2 for equal spacing between iso-potential lines.

L = actual length of AE in Figure 1. Note that (2L)? is the area of the five-spot pattern.
The results of the Fortran Program are given in Table 1. Figure 2 is a plot of these data.
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Figure 2. Intersections of Streamlines with Isoptential Lines.
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Table 1 : Results of Frotran Program

37

11J ] x [ Y [I1J3] X [ vy |1}1] X | Y
11 1 100382 00382 | 3] 1 |00482 [00245 | 5 | 1 [ 0.0534 | 0.0085
112 |0.1493 |0.1493 | 3| 2 | 01879 | 0.0963 | 5 | 3 | 0.2084 } 00333
113 | 02604 |02604 | 3| 3 |0.3266 | 0.169 | 5 | 3 | 03627 | 0.0592
1| 4 {03715 |03715 | 3| 4 (04638 | 02456 | 5 | 4 | 0.5164 | 0.0872
1|5 |04826 {04826 | 3| 5 |0.599 | 03257 | 5 | 5| 0.6699 | 0.1187
1|6 05937 {05937 | 3| 6 [0.7318 | 04116 | 5 | 6 | 0.8250 | 0.1561
117 | 04048 [0.7048 | 3| 7 [0.8620 | 0.5050 | 5 | 7 | 0.9841 ;| 0.2038
118 08159 |0.8159 | 3] 8 |0.9888 | 06076 | 5 | 8 | 11513 | 02710
1] 9 |1.0381 |1.0381 | 3] 9 [1.2465 {08653 | 5 | 9 | 1.5831 | 0.7027
110! 1.1492 |1.1492 | 3] 10| 1.3490 {09921 | 5 | 10| 1.6503 | 0.8699
111112603 |1.2603 | 3| 11 |1.4424 | 1.1223 | 5 | 11 | 1.6980 | 10291
111211374 [13714 | 3] 1215283 | 1.2551 | 5 | 12| 17354 | 1.184]
111314825 [1.4825 | 3] 13(1.6085 | 1.3903 | 5 | 13| 1.7669 | 1.3377
1114 |15936 |1.5936 | 3| 14|1.6845 | 1.5274 | 5 | 14| 1.7948 | 14914
1115]17047 | 17047 | 3| 15|1.7578 | 1.6662 | 5 | 15| 1.8208 | 1.6457
111618158 |1.8158 | 3] 16[1.8295 | 1.8059 | 5 | 16 | 1.8456 | 1.8007
211 100437 |0.0318 | 4| 1 00514 [0.0167 | 6 [ 1 | 0.0541 | 0.000
21 2 101707 |0.1244 | 4| 2 |0.2006 | 00657 | 6 | 2 | 0.2110 | 0.000
213 {02969 |02178 | 4| 3 |0.3489 | 0.1163 | 6 | 3 | 0.3674 | 0.000
2| 4 | 04220 |03128 | 4| 4 |0.4959 | 0.1700 | 6 | 4 | 0.5235 | 0.000
215 05456 | 04098 | 4| 5 [0.6415 | 02287 | 6 | 5 | 0.6801 | 0.000
216 [06673 |0.5097 | 4] 6 [0.7861 | 02949 | 6 | 6 | 0.8396 | 0.000
217 107868 | 06128 [ 4| 7 |0.9300 | 03724 | 6 | 7 | 1.0067 | 0.000
218 109040 |07197 | 4| 8 [1.0728 | 04661 | 6 | 8 | 1.1914 | 0.000
21 9 |1.1344 {09501 [ 4] 9 [1.3880 | 07813 | 6 | 9 | 18541 | 0.6626
2110] 12412 |1.0672 | 4| 10|1.4817 | 09241 | 6 | 10| 1.8541 | 0.8474
211113444 |1.1868 | 4| 11 {15592 | 1.0680 | 6 | 11 | 1.8541 | 1.0145
212114442 | 13085 | 4| 12 |1.6254 | 1.2125 | 6 | 12| 1.8541 | 1.1740
2113 ]15413 |1.4321 | 4| 13 [1.6840 | 1.3582 | 6 | 13 [ 1.8541 | 1.3306
2|14 16362 | 15572 | 4| 1417377 | 1.5052 | 6 | 14 | 1.8541 | 14866
2115117297 {16834 | 4| 15|1.7884 | 1.6535 | 6 | 15| 1.8541 | 1.5431
216 ]18223 |1.8103 | 4| 16|1.8374 | 1.8026 | 6 | 16 | 1.8541 | 1.8000
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Conclusions
This paper presented an algorithm to gﬁncme curvilinear grid systems for a pattern geometry.

The spacing between grid cells can be logarithmic as well as equal. The logarithmic option allows
more grid blocks where it is needed that is-around wellbores.

Test results show that fast convergence is achieved under minimum constraints that is with single.
precision and a fairly large tolerance.

The flexability of this approach is reflected by the reduced amount of input data required,
essentially the length of the pattern geometry and the number of grid cells required between
streamtubes and iso-potentials.

Nomenclature
¢ (x,y) = real potential function
¥ (X,y) = streamline function
Cn = elliptic cosine
Dn = elementary Jacobian elliptic function

Sn = elliptic sine
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