
Definitions

Stress Ratio

Amplitude Ratio

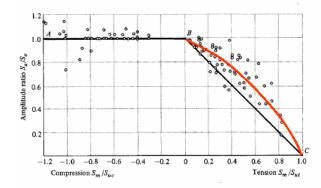
$$R = \frac{\sigma_{min}}{\sigma_{max}}$$

$$A = \frac{\sigma_a}{\sigma_m}$$

Stress Range

$$\sigma_{r} = \sigma_{max} - \sigma_{min}$$

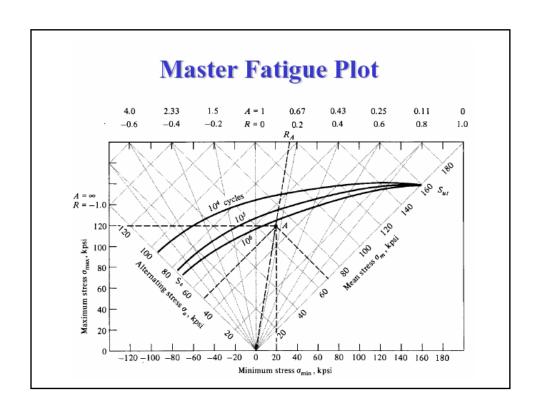
Alternating Stress

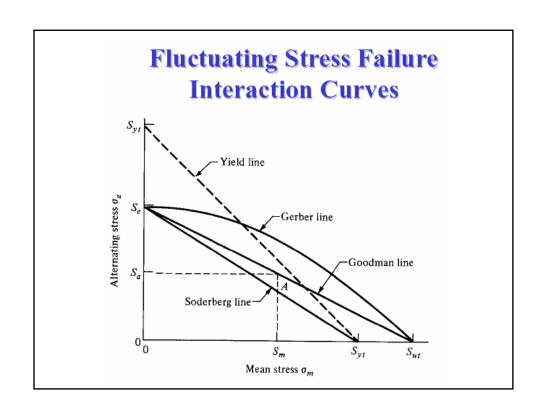

$$\sigma_a = \frac{\sigma_{max} - \sigma_{min}}{2}$$

Mean Stress

$$\sigma_{_{m}}=\frac{\sigma_{_{max}}+\sigma_{_{min}}}{2}$$

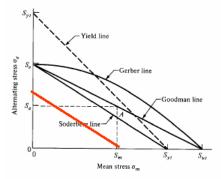
Note that R=-1 for a completely reversed stress state with zero mean stress.


Fluctuating Stress Failure Data



This plot shows the fatigue strength of several steels as a function of mean stress for a constant number of cycles to failure.

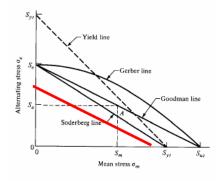
Note that a tensile mean stress results in a significantly lower fatigue strength for a given number of cycles to failure.


Note that a curved line passes through the mean of the data.

Soderberg Interaction Line

$$\frac{S_a}{S_e} + \frac{S_m}{S_{yt}} = 1$$

Any combination of mean and alternating stress that lies on or below the Solderberg line will have infinite life.


Factor of Safety Format

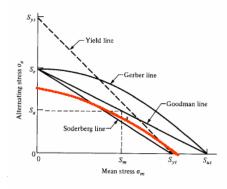
$$\frac{\sigma_{\rm a}}{S_{\rm e}} + \frac{\sigma_{\rm m}}{S_{\rm vt}} = \frac{1}{n_{\rm f}}$$

Note that the fatigue stress concentration factor is applied only to the alternating component.

Goodman Interaction Line

$$\frac{S_a}{S_e} + \frac{S_m}{S_{ut}} = 1$$

Any combination of mean and alternating stress that lies on or below the Goodman line will have infinite life.


Factor of Safety Format

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_{ut}} = \frac{1}{n_f}$$

Note that the fatigue stress concentration factor is applied only to the alternating component.

Gerber Interaction Line

$$\frac{S_a}{S_e} + \left(\frac{S_m}{S_{ut}}\right)^2 = 1$$

Any combination of mean and alternating stress that lies on or below the Gerber line will have infinite life.

Factor of Safety Format

$$\frac{n_f \sigma_a}{S_e} + \left(\frac{n_f \sigma_m}{S_{ut}}\right)^2 = 1$$

Note that the fatigue stress concentration factor is applied only to the alternating component.

ASME-elliptic (distortion-energy)

$$\left(\frac{S_a}{S_e}\right)^2 + \left(\frac{S_m}{S_{vt}}\right)^2 = 1$$

Factor of Safety Format

$$\left(\frac{n_f \sigma_a}{S_e}\right)^2 + \left(\frac{n_f \sigma_m}{S_{yt}}\right)^2 = 1$$

Table 7-15

Amplitude and Steady Coordinates of Strength and Important Intersections in First Quadrant for DE-Gerber and Langer Failure Loci

	Iw[
	84			
intade of, April	50 -	Load lin		
Stress amp	34.3	X	- Langer line	
	20		1	Gerber fatigue locus
l	0/	10 42 50	676	

Intersecting Loci Intersection Coordinates

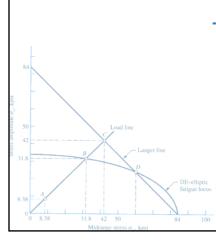
$$\frac{S_a}{S_e} + \left(\frac{S_m}{S_{ut}}\right)^2 = 1 \qquad S_a = \frac{r^2 S_{ut}^2}{2S_e} \left[-1 + \sqrt{1 + \left(\frac{2S_e}{r S_{ut}}\right)^2} \right]$$

Load line
$$r = \frac{S_a}{S_m}$$
 $S_m = \frac{S_a}{r}$ (Point B)

$$\frac{S_a}{S_y} + \frac{S_m}{S_y} = 1 \qquad \qquad S_\sigma = \frac{rS_y}{1+r}$$

Load line
$$r = \frac{S_a}{S_m}$$
 $S_m = \frac{S_y}{1+r}$ (Point C)

$$\frac{S_a}{S_e} + \left(\frac{S_m}{S_{ut}}\right)^2 = 1 \qquad S_m = \frac{S_{ut}^2}{2S_e} \left[1 - \sqrt{1 + \left(\frac{2S_e}{S_{ut}}\right)^2 \left(1 - \frac{S_y}{S_e}\right)}\right]$$


$$\frac{S_a}{S_v} + \frac{S_m}{S_v} = 1$$
 $S_a = S_y - S_m, r_{crit} = S_a/S_m$ (Point D

Fatigue factor of safety

$$n_f = \frac{1}{2} \left(\frac{S_{ut}}{\sigma_m} \right)^2 \frac{\sigma_a}{S_e} \left[-1 + \sqrt{1 + \left(\frac{2\sigma_m S_e}{S_{ut} \sigma_a} \right)^2} \right]$$

Table 7-16

Amplitude and Steady Coordinates of Strength and Important Intersections in First Quadrant for DE-Elliptic and Langer Failure Loci

ACRES SERVICES			CHENCE OF WA	100000000000000000000000000000000000000
Intersecting	Loci	Intersecti	on Coord	linates

$$\left(\frac{S_a}{S_e}\right)^2 + \left(\frac{S_m}{S_y}\right)^2 = 1$$

$$S_a = \sqrt{\frac{r^2 S_e^2 S_y^2}{S_e^2 + r^2 S_y^2}}$$

$$S_m = \frac{S_a}{r}$$
(Point B)

$$S_a = \frac{rS_v}{1+r}$$

Load line
$$r = S_a/S_m$$
 $S_m = \frac{S_y}{1+r}$ (Point C)

Fatigue factor of safety

$$n_f = \sqrt{\frac{1}{(\sigma_a/S_e)^2 + (\sigma_m/S_y)^2}}$$