
Definitions

Stress Range
$$\sigma_{\rm r} = \sigma_{\rm max} - \sigma_{\rm min}$$

Alternating Stress

$$\sigma_a = \frac{\sigma_{max} - \sigma_{min}}{2}$$

Mean Stress

$$\sigma_{\rm m} = \frac{\sigma_{\rm max} + \sigma_{\rm min}}{2}$$

Note that R=-1 for a completely reversed stress state with zero mean stress.

Stress Ratio

Amplitude Ratio

$$R = \frac{\sigma_{min}}{\sigma_{max}}$$

$$A = \frac{\sigma_a}{\sigma_m}$$

Endurance Limit Multiplying Factors

(Marin Factors)

$$S_e = k_a.k_b.k_c.k_d.k_e.k_f.S'_e$$

 $S_e \equiv Endurance limit of part$

 $S'_e \equiv \text{Endurance limit of test specimen}$

k_a ≡ Surface factor

 $k_b \equiv Size factor$

 $k_c \equiv Load factor$

 $k_d \equiv Temperature factor$

 $k_e \equiv Reliability factor$

 k_f = Miscellaneous effects factor

There are several factors that are known to result in differences between the endurance limits in test specimens and those found in machine elements.

See section 7-9 in Shigley For a discussion on each factor