KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS
 Department of Mathematical Sciences
 Dhahran, Saudi Arabia

Math 202 Final Examination. Wednesday, June 8, 2005.

Time Allowed: $\quad 7 \mathrm{pm}-9 \mathrm{pm}(2 \mathrm{hrs})$.

Instructor: Y. A. Fiagbedzi

Student Name: \qquad Sect. \qquad

Student ID. No. \qquad

1. Either FILL IN the gaps or choose TRUE or FALSE as appropriate

- Every boundary value problem has at least one solution. TRUE FALSE
- Consider the initial value problem $x(x+2) y^{\prime \prime}+3 y^{\prime}+4 y=0, \quad y^{\prime}(1)=y(1)=0$.

The largest interval over which it is guaranteed to have unique solution is \qquad

- A first order differential equation of the form $\frac{d y}{d x}=f(x) g(y)$ is always exact.

TRUE FALSE

- It can be shown that

$$
y=c x+a \sqrt{1+c^{2}}
$$

is a one-parameter family of solutions to the differential equation

$$
y=x \frac{d y}{d x}+a \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}
$$

It can also be shown that

$$
y=\sqrt{a^{2}-x^{2}}
$$

is also a particular solution. Such a particular solution is called a solution.
2. Find the eigenvalues of $A=\left(\begin{array}{rrr}0 & 8 & 0 \\ 0 & 0 & -2 \\ 2 & 8 & -2\end{array}\right)$. Compute one complex eigenvector.
3. Put the differential equation

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+5 x=\cos t
$$

in the state space form $\underline{x}^{\prime}(t)=A \underline{x}(t)+\underline{F}(t) . \quad A, \underline{F}(t)$ and $\underline{x}(t)$ must be clearly defined.
4. Given that the eigenvalues of $A=\left(\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right)$ are $\lambda_{1}=1+i, \lambda_{2}=1-i$, a) Show that $\underline{v}_{1}=\binom{-i}{1}$ is an eigenvector.
b) Obtain the general solution to the system $\dot{x}(t)=A x(t)$ in the form $x(t)=\Phi(t) \underline{c}$ where \underline{c} is an arbitrary constant vector.
5. Use the following words: exact, homogeneous, Bernoulli, Cauchy-Euler, separable to label the differential equations given below. For each labelling, if available, give a substitution that faciliatates the solution of the corresponding differential equation.

Differential Equation	Label	Substitution
Example: $x y^{2} \frac{d y}{d x}=y^{3}-x^{3}$	homogeneous	$y=u x$
$\left(e^{x}+y\right) d x+\left(2+x+y e^{y}\right) d y=0$		
$\left(x+y e^{\frac{x}{y}}\right) d x+x e^{\frac{y}{x}} d y=0$		
$x \frac{d y}{d x}-(\sin x) y=e^{x} y^{2}$		
$4 x^{2} \frac{d^{2} y}{d x^{2}}+y=0$		

6. Determine whether $x=0$ is an ordinary point, regular singular point or irregular singular point of the differential equation

$$
x y^{\prime \prime}+(\sin x) y^{\prime}+x y=0 .
$$

Do the same problem again but with the differential equation

$$
x y^{\prime \prime}+(\cos x) y^{\prime}+x y=0 .
$$

7. a) Determine a differential operator, $p(D)$, (of the least order) which annihilates

$$
y(x)=c_{0}+\left(c_{1}+c_{2} x\right) \cos x+\left(d_{1}+d_{2} x\right) \sin x-x
$$

where $c_{0}, c_{1}, c_{2}, d_{1}, d_{2}$ are arbitrary constants.
b) Determine a differential equation of the lowest order of which $y(x)$ is the general solution.
8. Specify a method you would use to solve

$$
x y^{\prime \prime}+2 y^{\prime}=0 ?
$$

Given that $y_{1}=1, y_{2}=\frac{1}{x}$ constitute a fundamental set of solutions for the above differential equation, obtain the general solution to

$$
x y^{\prime \prime}+2 y^{\prime}=\sqrt{x}, \quad x>0
$$

9. A tank is partially filled with 200 liters of fluid in which 10 kg of salt is dissolved. Brine containing 1 kg of salt per liter is pumped into the tank at a rate of 15 liters per minute. The well-mixed solution is then pumped out at a slower rate of 10 liters per minute. If $A(t)$ denotes the amount (in kilograms) of salt in the tank at time t, determine

- The rate at which salt enters the tank from the brine solution
- The volume of the liquid in the tank at time t
- The rate at which salt is being pumped out of the tank
- Set up a differential equation for $A(t)$. Do not solve the differential equation.

10. Consider the IVP:

$$
\begin{aligned}
y^{\prime} & =(y-1)^{2}(y+2) \\
y(1) & =0
\end{aligned}
$$

- Identify the equilibrium (critical) points
- Classify each critical point as stable, unstable or semi-stable.
- If $y(x)$ is the solution of the IVP, find $\lim _{x \rightarrow \infty} y(x)$

