Instructor: Y. A. Fiagbedzi

1. Fill in the following table with the words TRUE or FALSE where appropriate.

Differential Equation	separable	exact	linear 1st order ode
$\left(x^{2}-y^{2}\right) d x+\left(e^{y} \ln y-2 x y\right) d y=0$	FALSE	TRUE	FALSE
$x d y-\left(2 y+x^{3} \cos x\right) d x=0$	FALSE	FALSE	TRUE
$\frac{d y}{d x}=a^{x+y} \quad(a>0, a \neq 1)$	TRUE	TRUE	FALSE

2. Consider the initial value problem (IVP)

$$
\begin{aligned}
y^{\prime} & =\sqrt{y^{2}-9} \\
y\left(x_{0}\right) & =y_{0} .
\end{aligned}
$$

Describe $\left(x_{0}, y_{0}\right)$ for which the IVP will have unique solution

Solution. $f(x, y)=\sqrt{y^{2}-9}$ is continuous in the region

$$
\left\{(x, y): x \in \mathbb{R}, y^{2} \geq 9\right\}=\{(x, y): x \in \mathbb{R},|y| \geq 3\}
$$

But $\frac{\partial y}{\partial x}=\frac{y}{\sqrt{y^{2}-9}}$ is continuous in the region

$$
\left\{(x, y): x \in \mathbb{R}, y^{2}>9\right\}=\{(x, y): x \in \mathbb{R},|y|>3\}
$$

Therefore, the given IVP has unique solution through all points $\left(x_{0}, y_{0}\right)$ such that $x_{0} \in \mathbb{R}$ and $\left|y_{0}\right|>3$. This is the region

$$
\{(x, y): x \in \mathbb{R}, y>3\} \cup\{(x, y): x \in \mathbb{R}, y<-3\}
$$

3. Obtain a one parameter family of solutions to the differential equation

$$
\left(1+y^{2}\right) d x+\sqrt{1-x^{2}} d y=0
$$

Your solution must be displayed in the explicit form.

Solution. Separate the variables to get

$$
\frac{d x}{\sqrt{1-x^{2}}}+\frac{d y}{1+y^{2}}=0
$$

Integrate to get

$$
\sin ^{-1} x+\tan ^{-1} y=c
$$

where c is an arbitrary constant. This solution can be expressed explicitly as

$$
y(x)=\tan \left(c-\sin ^{-1} x\right)
$$

4. If

$$
y=f\left(x ; c_{1}, c_{2}, c_{3}\right)
$$

where, c_{1}, c_{2}, c_{3} are arbitrary constants, is the solution of a linear differential equation, then the differential equation must be of order THREE. This solutions is of the EXPLICIT form.
5. Let a be a non-zero constant. Solve

$$
y+x y^{\prime}=a(1+x y)
$$

Solution. Open up the bracket to get $y+x y^{\prime}=a+a x y$. Then collect together the terms in y to get $x y^{\prime}+(1-a x) y=a$. This is then put in the standard form as

$$
y^{\prime}+\left(\frac{1}{x}-a\right) y=\frac{a}{x}
$$

Therefore the integrating factor

$$
\begin{aligned}
\mu & =e^{\int\left(\frac{1}{x}-a\right) d x} \\
& =e^{\ln |x|-a x}=|x| e^{-a x}=|x| e^{-a x}
\end{aligned}
$$

Choose $\mu=x e^{-a x}$ and then multiply the standard form with μ to get

$$
x e^{-a x} y^{\prime}+x e^{-a x}\left(\frac{1}{x}-a\right) y=a e^{-a x}
$$

That is, $\left(x e^{-a x} y\right)^{\prime}=a e^{-a x}$ which, on integration, gives $x e^{-a x} y=c-e^{-a x}$ where c is an arbitrary constant of integration. Therefore,

$$
y=\frac{c}{x} e^{a x}-\frac{1}{x}, \quad x \neq 0
$$

6. Obtain the critical points of the differential equation

$$
\frac{d y}{d x}=y \sin y
$$

Given that $y=0$ is a critical solution, determine whether it is stable, semi-stable or unstable

Solution The critical points are given by $c \sin c=0$. This gives $c=0$ or $\sin c=0$. The latter yields $c=n \pi, \quad n=0, \pm 1, \pm 2, \ldots$. Thus, the critical points are

$$
c=0,0, \pm \pi, \pm 2 \pi, \ldots
$$

Now consider the equilibrium (critical) solution $y_{c}(x)=0$. When $-\pi<y<0$, then $y^{\prime}=y \sin y>0$ and y is an increasing function. Similarly, when $0<y<\pi$, $y^{\prime}=y \sin y>0$ and and again y is an increasing function. Thus $y_{c}(x)=0$ is an attractor for $y<0$ and a repeller for $y>0$. Therefore, $y_{c}(x)=0$ is semi-stable.

$$
\left.\begin{array}{c}
\pi \\
+ \\
+ \\
+ \\
0 \\
+ \\
+ \\
+ \\
-\pi
\end{array}\right]
$$

Phase Portrait Around $c=0$

