KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS
 Department of Mathematical Sciences
 Dhahran, Saudi Arabia

Math 202 First Major Examination. Monday, March 14, 2005.

Time Allowed: 90 min .

Instructor: Y. A. Fiagbedzi

\qquad

Student Name: \qquad Sect.

1. Solve the IVP:

$$
\begin{aligned}
y^{\prime}+y \tan x & =\cos x \\
y(0) & =0
\end{aligned}
$$

Specify the interval of validity.
2. Consider the initial value problem:

$$
\begin{aligned}
\frac{d y}{d x} & =-(y-1)^{2}(y+2) \\
y\left(x_{0}\right) & =y_{0}
\end{aligned}
$$

- The equilibrium points are $c_{1}=\quad, c_{2}=$
- Classify each equlibrium point as stable, semi-stable, or unstable.
- If $y(\cdot)$ is the solution of the inital value problem for $x_{0}=1, y_{0}=0$, what is $\lim _{x \rightarrow \infty} y(x) ?$

3. Obtain a one parameter family of solutions for the differential equation:

$$
y \frac{d y}{d x}=4 x e^{2 x+y}
$$

4. Solve the differential equation:

$$
\left(x^{3}+y \sin x\right) d x+(2 y-\cos x) d y=0
$$

5. Determine an integrating factor, $\mu=\mu(y)$, which will make the differential equation,

$$
y \cos x d x+\left(1+\frac{2}{y}\right) \sin x d y=0
$$

exact.
6. Fill in the gaps:

- The differential equation, $y=x y^{\prime}-\left(y^{\prime}\right)^{2}$ has a one parameter family of solutions given by $y=c x-c^{2}$. It is the case that $y=\frac{x^{2}}{4}$ is also a solution. $y=\frac{x^{2}}{4}$ is an example of a \qquad solution.
- $x y^{\prime}=y+\sqrt{x^{2}-y^{2}}$ is a first order ode which can be solved with the substitution $y=$
- $y=0$ is a $\quad \quad$ solution of $3 x^{2} y^{\prime \prime}+4 x y^{\prime}+5 y=0$.
- $(\sin x) y^{\prime \prime}+4 x y^{\prime}+5 y=|y|$ is a nonlinear ode because

