KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Department of Mathematical Sciences Dhahran, Saudi Arabia

MATH 202 SECOND MAJOR EXAMINATION.

Tuesday Dec. 6, 2005. Time Allowed:

Instructor: Y. A. Fiagbedzi

STUDENT ID _____

Student Name: _____

_Sect. _____

75 min.

1. We want to find the particular solutions for the differential equation

$$y'' + 3y' + 2y = g(x).$$

for various g(x). Answer Yes or No in the following table. If your answer is Yes to the annihilator method, give the annihilator, p(D).

	Can we use	Can we use	
g(x)	the annihilator	the variation of	Annihilator, $p(D)$
	method?	parameters method?	
xe^x	Yes	Yes	$(D - 1)^2$
$(\ln x)/x$	No	Yes	
$x \sin^{-1} x$	No	Yes	_
$(1+\cos 2x)/2$	Yes	Yes	$D(D^2 + 4)$
1/(1+x)	No	Yes	

2. Given that $y_1(x) = (\sin x)/x$ is a solution of the differential equation

$$xy'' + 2y' + xy = 0,$$

determine a fundamental set of solutions for the differential equation

SOLUTION. Put the differential equation in standard form, $y'' + \frac{2}{x}y' + y = 0$, so as to identify $P(x) = \frac{2}{x}$. Then $\int P(x)dx = 2\ln|x| = \ln x^2$. We are given $y_1(x) = (\sin x)/x$. Therefore a second solution

$$y_2(x) = y_1 \int \frac{e^{-\int P(x)dx}}{y_1^2} dx$$
$$= y_1 \int \frac{e^{-\ln x^2}}{(\sin x/x)^2} dx$$
$$= y_1 \int \csc^2(x) dx = -y_1 \cot x$$
$$= -(\cos x)/x$$

Therefore a fundamental set of solutions is given by $\{(\sin x)/x, (\cos x)/x\}$.

3. Obtain a fundamental set of solutions for the differential equation $x^2y'' + xy' - y = 0$.

Solution. This is a Cauchy-Euler equation. Thus, putting $x = e^t$ gives

$$xy' = \frac{dy}{dt}, \quad x^2y'' = \frac{d^2y}{dt^2} - \frac{dy}{dt}$$

Under this transformation, the given equation becomes

$$0 = \frac{d^2y}{dt^2} - \frac{dy}{dt} + \frac{dy}{dt} - y$$
$$= \frac{d^2y}{dt^2} - y$$

with characteristic equation $m^2 - 1 = 0$. That is, $m_1 = 1$, $m_2 = -1$. This gives $y_1 = e^t$ and $y_2 = e^{-t}$ as the fundamental set of solutions. In terms of x, this is

$$\left\{x, \ \frac{1}{x}\right\}.$$

4. Find the form of the particular solution of the differential equation

$$y'' + y = x \cos x$$

SOLUTION. The general solution is given by $y = y_c(x) + y_p(x)$ where y_c denotes the complementary function and y_p represents the particular integral. The complementary function satisfies $(D^2 + 1)y_c = 0$ whose characteristic equation is given by

$$0 = (m^2 + 1) \Rightarrow m_1 = i, \quad m_2 = -i$$

This gives the fundamental set

$$y_{c1} = \cos x, \qquad y_{c2} = \sin x.$$

The particular solution, y_p , satisfies

$$(D^2 + 1)y_p = x\cos x$$

To obtain y_p , annihilate the right hand side of the above equation with

$$p(D) = (D^2 + 1)^2.$$

The result is

$$(D^{2} + 1)^{2}(D^{2} + 1)y_{p} = (D^{2} + 1)^{2}[x \cos x]$$

= 0

whose characteristic equation is given by

$$0 = (m^2 + 1)^3 \Rightarrow m_1 = m_3 = m_5 = i, \quad m_2 = m_4 = m_6 = -i$$

Now, the fundamental set is given by

$$y_{p1} = \cos x,$$
 $y_{p2} = x \cos x,$ $y_{p3} = x^2 \cos x$
 $y_{p2} = \sin x,$ $y_{p2} = x \sin x,$ $y_{p3} = x^2 \sin x$

Ignoring the contribution due to $\cos x$, $\sin x$, the particular solution must be of the form

$$y_p = Ay_{p3} + By_{p4} + Cy_{p5} + Dy_{p6}$$

= $x \cos x [A + Cx] + x \sin x [B + Dx]$

5. If $y_1(x) = 1$, $y_2(x) = \cos x$, $y_3(x) = \sin x$ form a fundamental set of solutions for a constant coefficient linear ordinary differential equation, then the order of the differential equation is 3. Also, find the differential equation.

SOLUTION.

- D annihilates y_1
- $(D^2 + 1)$ annihilates y_2, y_3
- Therefore $D(D^2 + 1)$ annihilates y_1, y_2, y_3 .

Therefore, the differential equation is $D(D^2 + 1)y = 0.$

6. Given that $y_1(x) = e^{2x}$ is a solution of y''' - y'' - 2y = 0, determine the general solution.

SOLUTION. We infer that (m-2) is a factor of the system characteristic polynomial, $m^3 - m^2 - m - 2$. Therefore

$$0 = m^{3} - m^{2} - m - 2$$

= $(m - 2)(m^{2} + m + 1)$
= $(m - 2) [(m + 1/2)^{2} + 3/4] \Rightarrow$
 $m_{1} = 2, \qquad m_{2} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \qquad m_{3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$

Therefore,

$$y_1 = e^{2x}$$
, $y_2 = e^{-x/2} \cos \frac{\sqrt{3}}{2}x$, $y_3 = e^{-x/2} \sin \frac{\sqrt{3}}{2}x$

constitute a fundamental set of solutions. As a consequence, the general solution is given by

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + c_3 y_3(x)$$

= $c_1 e^{2x} + e^{-x/2} \left[c_2 \cos \frac{\sqrt{3}}{2} x + c_3 \sin \frac{\sqrt{3}}{2} x \right]$