KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS
 Department of Mathematical Sciences
 Dhahran, Saudi Arabia

Math 202 Second Major Examination.

Tuesday Dec. 6, $2005 . \quad$ Time Allowed: 75 min.

Instructor: Y. A. Fiagbedzi

\qquad
\qquad Sect.

1. We want to find the particular solutions for the differential equation

$$
y^{\prime \prime}+3 y^{\prime}+2 y=g(x)
$$

for various $g(x)$. Answer Yes or No in the following table. If your answer is Yes to the annihilator method, give the annihilator, $p(D)$.

$g(x)$	Can we use the annihilator method?	Can we use the variation of parameters method?	Annihilator, $p(D)$
$x e^{x}$	Yes	Yes	$(D-1)^{2}$
$(\ln x) / x$	No	Yes	-
$x \sin ^{-1} x$	No	Yes	-
$(1+\cos 2 x) / 2$	Yes	Yes	$D\left(D^{2}+4\right)$
$1 /(1+x)$	No	Yes	-

2. Given that $y_{1}(x)=(\sin x) / x$ is a solution of the differential equation

$$
x y^{\prime \prime}+2 y^{\prime}+x y=0
$$

determine a fundamental set of solutions for the differential equation

Solution. Put the differential equation in standard form, $y^{\prime \prime}+\frac{2}{x} y^{\prime}+y=0$, so as to identify $P(x)=\frac{2}{x}$. Then $\int P(x) d x=2 \ln |x|=\ln x^{2}$. We are given $y_{1}(x)=(\sin x) / x$.

Therefore a second solution

$$
\begin{aligned}
y_{2}(x) & =y_{1} \int \frac{e^{-\int P(x) d x}}{y_{1}^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln x^{2}}}{(\sin x / x)^{2}} d x \\
& =y_{1} \int \csc ^{2}(x) d x=-y_{1} \cot x \\
& =-(\cos x) / x
\end{aligned}
$$

Therefore a fundamental set of solutions is given by $\{(\sin x) / x,(\cos x) / x\}$.
3. Obtain a fundamental set of solutions for the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$.

Solution. This is a Cauchy-Euler equation. Thus, putting $x=e^{t}$ gives

$$
x y^{\prime}=\frac{d y}{d t}, \quad x^{2} y^{\prime \prime}=\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}
$$

Under this transformation, the given equation becomes

$$
\begin{aligned}
0 & =\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}+\frac{d y}{d t}-y \\
& =\frac{d^{2} y}{d t^{2}}-y
\end{aligned}
$$

with characteristic equation $m^{2}-1=0$. That is, $m_{1}=1, m_{2}=-1$. This gives $y_{1}=e^{t}$ and $y_{2}=e^{-t}$ as the fundamental set of solutions. In terms of x, , this is

$$
\left\{x, \frac{1}{x}\right\} .
$$

4. Find the form of the particular solution of the differential equation

$$
y^{\prime \prime}+y=x \cos x
$$

Solution. The general solution is given by $y=y_{c}(x)+y_{p}(x)$ where y_{c} denotes the complementary function and y_{p} represents the particular integral. The complementary function satisfies $\left(D^{2}+1\right) y_{c}=0$ whose characteristic equation is given by

$$
0=\left(m^{2}+1\right) \Rightarrow m_{1}=i, \quad m_{2}=-i
$$

This gives the fundamental set

$$
y_{c 1}=\cos x, \quad y_{c 2}=\sin x
$$

The particular solution, y_{p}, satisfies

$$
\left(D^{2}+1\right) y_{p}=x \cos x
$$

To obtain y_{p}, annihilate the right hand side of the above equation with

$$
p(D)=\left(D^{2}+1\right)^{2} .
$$

The result is

$$
\begin{aligned}
\left(D^{2}+1\right)^{2}\left(D^{2}+1\right) y_{p} & =\left(D^{2}+1\right)^{2}[x \cos x] \\
& =0
\end{aligned}
$$

whose characteristic equation is given by

$$
0=\left(m^{2}+1\right)^{3} \Rightarrow m_{1}=m_{3}=m_{5}=i, \quad m_{2}=m_{4}=m_{6}=-i
$$

Now, the fundamental set is given by

$$
\begin{array}{lll}
y_{p 1}=\cos x, & y_{p 2}=x \cos x, & y_{p 3}=x^{2} \cos x \\
y_{p 2}=\sin x, & y_{p 2}=x \sin x, & y_{p 3}=x^{2} \sin x
\end{array}
$$

Ignoring the contribution due to $\cos x, \sin x$, the particular solution must be of the form

$$
\begin{aligned}
y_{p} & =A y_{p 3}+B y_{p 4}+C y_{p 5}+D y_{p 6} \\
& =x \cos x[A+C x]+x \sin x[B+D x]
\end{aligned}
$$

5. If $y_{1}(x)=1, y_{2}(x)=\cos x, \quad y_{3}(x)=\sin x$ form a fundamental set of solutions for a constant coefficient linear ordinary differential equation, then the order of the differential equation is 3 . Also, find the differential equation.

Solution.

- D annihilates y_{1}
- $\left(D^{2}+1\right)$ annihilates y_{2}, y_{3}
- Therefore $D\left(D^{2}+1\right)$ annihilates y_{1}, y_{2}, y_{3}.

Therefore, the differential equation is $D\left(D^{2}+1\right) y=0$.
6. Given that $y_{1}(x)=e^{2 x}$ is a solution of $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}-2 y=0$, determine the general solution.

Solution. We infer that $(m-2)$ is a factor of the system characteristic polynomial, $m^{3}-m^{2}-m-2$. Therefore

$$
\begin{aligned}
0= & m^{3}-m^{2}-m-2 \\
= & (m-2)\left(m^{2}+m+1\right) \\
= & (m-2)\left[(m+1 / 2)^{2}+3 / 4\right] \Rightarrow \\
m_{1}=2, \quad & m_{2}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}, \quad m_{3}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}
\end{aligned}
$$

Therefore,

$$
y_{1}=e^{2 x}, \quad y_{2}=e^{-x / 2} \cos \frac{\sqrt{3}}{2} x, \quad y_{3}=e^{-x / 2} \sin \frac{\sqrt{3}}{2} x
$$

constitute a fundamental set of solutions. As a consequence, the general solution is given by

$$
\begin{aligned}
y(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x)+c_{3} y_{3}(x) \\
& =c_{1} e^{2 x}+e^{-x / 2}\left[c_{2} \cos \frac{\sqrt{3}}{2} x+c_{3} \sin \frac{\sqrt{3}}{2} x\right]
\end{aligned}
$$

