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ON HARMONIC MORPHISMS PROJECTING HARMONIC
FUNCTIONS TO HARMONIC FUNCTIONS

M. T. MUSTAFA

Abstract. For Riemannian manifolds M and N , admitting a submersive harmonic
morphism φ with compact fibres, we introduce the vertical and horizontal compo-
nents of a real-valued function f on U ⊂ M . By comparing the Laplacians on M and
N , we determine conditions under which a harmonic function on U = φ−1(V ) ⊂ M
projects down, via its horizontal component, to a a harmonic function on V ⊂ N .

1. Introduction and Preliminaries

Harmonic morphisms are the maps between Riemannian manifolds which preserve

germs of harmonic functions i.e. these (locally) pull back harmonic functions to

harmonic functions. The aim of this note is to analyse the converse situation and to

investigate the class of harmonic morphisms that (locally) projects or pushes forward

harmonic functions to harmonic functions, in the sense of Definition 2.4. If such a

class exists, another interesting question arises “to what extent does the pull back of

the projected function preserve the original function”.

The formal theory of harmonic morphisms between Riemannian manifolds began

with the work of Fuglede [6] and Ishihara [10].

Definition 1.1. A smooth map φ : Mm → Nn between Riemannian manifolds is

called a harmonic morphism if, for every real-valued function f which is harmonic

on an open subset V of N with φ−1(V ) non-empty, f ◦ φ is a harmonic function on

φ−1(V ).

These maps are related to horizontally (weakly) conformal maps which are a natural

generalization of Riemannian submersions.

For a smooth map φ : Mm → Nn, let Cφ = {x ∈ M |rankdφx < n} be its critical

set. The points of the set M \Cφ are called regular points. For each x ∈ M \Cφ, the

vertical space at x is defined by T V
x M = Kerdφx. The horizontal space TH

x M at x is

given by the orthogonal complement of T V
x M in TxM .

Definition 1.2. A smooth map φ : (Mm,g) → (Nn,h) is called horizontally (weakly)

conformal if dφ = 0 on Cφ and the restriction of φ to M\Cφ is a conformal submersion,
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that is, for each x ∈ M \ Cφ, the differential dφx : TH
x M → Tφ(x)N is conformal and

surjective. This means that there exists a function λ : M \ Cφ → R+ such that

h(dφ(X), dφ(Y )) = λ2g(X,Y ) ∀X, Y ∈ TH
x M.

By setting λ = 0 on Cφ, we can extend λ : M → R+
0 to a continuous function on

M such that λ2 is smooth. The extended function λ : M → R+
0 is called the dilation

of the map.

Recall that a map φ : Mm → Nn is said to be harmonic if it extremizes the

associated energy integral E(φ) = 1
2

∫
Ω
‖φ∗‖2dυM for every compact domain Ω ⊂ M .

It is well-known that a map φ is harmonic if and only if its tension field vanishes.

Harmonic morphisms can be viewed as a subclass of harmonic maps in the light of

the following characterization, obtained in [6, 10].

A smooth map is a harmonic morphism if and only if it is harmonic and horizontally

(weakly) conformal.

What is special about this characterization of harmonic morphism is that it equips

them with geometric as well as analytic features. For instance, the following result of

Baird-Eells [2, Riemannian case] and Gudmundsson [8, semi-Riemannian case] reflects

such properties of harmonic morphisms.

Theorem 1.3. Let φ : Mm → Nn be a horizontally conformal submersion with

dilation λ. If

(1) n = 2, then φ is a harmonic map if and only if it has minimal fibres.

(2) n ≥ 3, then two of the following imply the other,

(a) φ is a harmonic map

(b) φ has minimal fibres

(c) Hgradλ2 = 0 where H denotes the projection on the horizontal subbundle

of TM .

For the fundamental results and properties of harmonic morphisms, the reader is

referred to [1, 4, 6, 11] and for an updated online bibliography to [9].

2. Harmonic morphisms projecting harmonic functions

Given a submersive harmonic morphism φ : Mm → Nn with compact fibres, we

can define the horizontal and vertical components of every integrable function f on

U ⊂ M , using fibre integration.

Definition 2.1. Let φ : Mm → Nn be a submersive harmonic morphism between

Riemannian manifolds with compact fibres. Define the horizontal component of an
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integrable function f , on M , at x as the average of f taken over the fibre φ−1(φ(x)).

Precisely, for any V ⊂ N and integrable function f : U = φ−1(V ) ⊂ M → R, the

horizontal component of f at x is defined as

(Hf)(x) =
1

vol(φ−1(y))

(∫
φ−1(y)

fvφ−1(y)

)
(φ(x))

where x ∈ U , φ(x) = y, vφ−1(y) is the volume element of the fibre φ−1(y), vol(φ−1(y))

is the volume of the fibre φ−1(y) and
(∫

φ−1(y)
fvφ−1(y)

)
(φ(x)) denotes the integral of

f |φ−1(φ(x)).

The vertical component of f is given by

(Vf)(x) = (f −Hf)(x).

Definition 2.2. A function f : U ⊂ M → R is called horizontally homothetic if the

horizontal component of grad(f) vanishes i.e. Hgrad(f) = 0 where H denotes the

orthogonal projection on the horizontal subbundle.

The components Hf and Vf have the following basic properties.

Lemma 2.3. Let φ : Mm → Nn be a submersive harmonic morphism with compact

minimal fibres. Consider x ∈ U and a function f : U ⊂ M → R.

(1) If f is horizontally homothetic at x then Hf is also horizontally homothetic

at x.

(2) If Hf is horizontally homothetic at x and either Xi(f) ≥ 0 or Xi(f) ≤ 0 (for

all i) on the fibre through x then f is horizontally homothetic, where {Xi}n
i=1

is a local orthonormal frame for the horizontal distribution.

(3) If f is constant along the fibre through x then Vf = 0.

Proof. The proof can be completed by following the calculations in Proposition 2.5

(below). �

Definition 2.4. Given a submersive harmonic morphism φ : Mm → Nn with com-

pact fibres, and let f : U = φ−1(V ) ⊂ M → R be an integrable function. The

horizontal component of f defines a function f̃ : V ⊂ N → R as

f̃(y) = (Hf)(x)

where x ∈ U and y = φ(x). The function f̃ is called the projection of f on N , via the

map φ.

The conditions under which the above projection takes harmonic functions to har-

monic functions can be obtained by employing an identity relating the Laplacian on

the fibre with the Laplacians on the domain and target manifolds.
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Proposition 2.5. Let φ : (Mm,g) → (Nn,h) (n > 2) be a non-constant submersive

harmonic morphism with dilation λ, having compact, connected and minimal fibres.

Then for any V ⊂ N and f : U = φ−1(V ) ⊂ M → R,

∆N f̃ =
1

vol(φ−1(y))

∫
φ−1(y)

1

λ2

(
∆Mf −∆φ−1(y)f

)
vφ−1(y)

+
1

vol(φ−1(y))

n∑
i=1

∫
φ−1(y)

(V∇M
Xi

Xi)fvφ−1(y)

where x ∈ U , φ(x) = y, f̃ is as defined in Definition 2.4 and ∆M , ∆N , ∆φ−1(y) are

the Laplacians on M , N , φ−1(y) respectively, and {Xi}n
i=1 denote the horizontal lift

of a local orthonormal frame {X ′
i}n

i=1 for TN .

Proof. First notice from Theorem 1.3 that λ is horizontally homothetic; a fact which

will be used repeatedly in the proof.

Choose a local orthonormal frame {X ′
i}n

i=1 for TN . If Xi denotes the horizontal lift

of X ′
i for i = 1, . . . , n then {λXi}n

i=1 is a local orthonormal frame for the horizontal

distribution. Let {Xα}m
α=n+1 be a local orthonormal frame for the vertical distribution.

Then we can write the Laplacian ∆M on M as

∆M =
n∑

i=1

{
λXi ◦ λXi −∇M

λXi
λXi

}
+

m∑
α=n+1

{
Xα ◦Xα −∇M

Xα
Xα

}
= λ2

n∑
i=1

{
Xi ◦Xi −∇M

Xi
Xi

}
+

m∑
α=n+1

{
Xα ◦Xα −∇M

Xα
Xα

}
.(2.1)

Now the Laplacian of the fibre φ−1(y) is

∆φ−1(y) =
m∑

α=n+1

{
Xα ◦Xα −∇φ−1(y)

Xα
Xα

}
.

Therefore, from Equation 2.1 we obtain

∆M = λ2
n∑

i=1

{
Xi ◦Xi −H∇M

Xi
Xi

}
+ ∆φ−1(y) −H − λ2

n∑
i=1

V∇M
Xi

Xi

= λ2
n∑

i=1

{
Xi ◦Xi −H∇M

Xi
Xi

}
+ ∆φ−1(y) − λ2

n∑
i=1

V∇M
Xi

Xi(2.2)

where H is (m − n) times the mean curvature vector field of the fibres and H, V
denote the orthogonal projections on the horizontal and vertical subbundles of TM ,

respectively.
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Since Xi is horizontal lift of X ′
i for i = 1, . . . , n, therefore for the function f̃ we

have

X ′
i(f̃) =

1

vol(φ−1(y))

{∫
φ−1(y)

Xi(f)vφ−1(y) +

∫
φ−1(y)

fLXi
(vφ−1(y))

}
=

1

vol(φ−1(y))

{∫
φ−1(y)

Xi(f)vφ−1(y) +
m∑

α=n+1

∫
φ−1(y)

fg(∇M
Xα

Xi, Xα)vφ−1(y)

}

=
1

vol(φ−1(y))

{∫
φ−1(y)

Xi(f)vφ−1(y) −
∫

φ−1(y)

fg(H, Xi)v
φ−1(y)

}
.(2.3)

The volume of the fibres does not vary in the horizontal direction because of the

relation X ′
i(vol(φ−1(y))) = −

∫
φ−1(y)

g(H, Xi)v
φ−1(y) and the fact that the fibres are

minimal.

Similarly, we obtain

X ′
i ◦X ′

i(f̃) =
1

vol(φ−1(y))

{∫
φ−1(y)

Xi ◦Xi(f)vφ−1(y) −
∫

φ−1(y)

Xi(f) · g(H, Xi)v
φ−1(y)

}
− 1

vol(φ−1(y))

{∫
φ−1(y)

Xi(fg(H, Xi))v
φ−1(y) −

∫
φ−1(y)

f(g(H, Xi))
2vφ−1(y)

}
(2.4)

The horizontal homothety of the dilation implies that H∇M
Xi

Xi is the horizontal lift

of ∇N
X′

i
X ′

i, cf. [3, Lemma 3.1], therefore, we have

(2.5)

∇N
X′

i
X ′

i(f̃) =
1

vol(φ−1(y))

{∫
φ−1(y)

(H∇M
Xi

Xi)(f)vφ−1(y) −
∫

φ−1(y)

f · g(H,H∇M
Xi

Xi)v
φ−1(y)

}
.

Now using Equations 2.3, 2.4, 2.5, along with the condition that the fibres are minimal,

in Equation 2.2 completes the proof. �

From the above Proposition, we see that it suffices to take λ constant to have both

f and f̃ harmonic on M and N respectively.

Theorem 2.6. Let φ : Mm → Nn (n ≥ 2) be a non-constant harmonic morphism with

constant dilation and compact, connected fibres. Then the projection f̃ : V ⊂ N → R
(via φ) of any harmonic function f : U = φ−1(V ) ⊂ M → R is a harmonic function.

Moreover, Hf = f̃ ◦φ. If [fH] denotes the class of harmonic functions on U = φ−1(V )

having same horizontal component then each class [fH] has a unique representative in

the space of harmonic functions on V .

Proof. Since the fibres are compact and dilation is constant, the harmonicity of f̃

follows from Proposition 2.5 because∫
φ−1(y)

∆φ−1(y)fvφ−1(y) = 0
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and

V∇M
Xi

Xi = −λ2

2
Vgrad(

1

λ2 ) = 0.

Rest of the proof follows from the construction of f̃ . �

As an application, we give a description of harmonic functions on manifolds admit-

ting harmonic Riemannian submersions with compact fibres.

Corollary 2.7. Let Mm be a Riemannian manifold admitting a harmonic Riemann-

ian submersion φ : Mm → Nn with compact fibres. Then

(1) Every horizontally homothetic (in particular constant) harmonic function on

U ⊂ M is horizontal i.e. Vf = 0.

(2) Every non-horizontally-homothetic harmonic function f on U ⊂ M satisfies

one of the following:

(a) Vf 6= 0.

(b) Vf = 0 and Xi(Hf) 6= 0 for at least one i ∈ {1, . . . , n}.
(c) Vf = 0, Xi(Hf) = 0 (for all i) and Xi(f) changes sign on the fibre, for

at least one i ∈ {1, . . . , n}.

Proof. Equation 2.2 implies that a horizontally homothetic harmonic function on M

is harmonic on the fibre and hence is constant on the fibre. Now using Lemma 2.3

we get the proof. �

Remark 2.8.

(1) Since an RN -valued map f = (f 1, . . . , fN) is harmonic if and only if each of its

component is harmonic, we see that Riemannian submersions with compact

fibres project RN -valued harmonic maps from φ−1(V ) to RN -valued harmonic

maps from V .

(2) Given a Lie group G and a compact subgroup H of G, the standard projection

φ : G → G/H with G-invariant metric provides many examples satisfying the

hypothesis of Theorem 2.6. Further examples can be obtained from Bergery’s

construction φ : G/K → G/H with K ⊂ H ⊂ G and K, H compact; see [5]

for the details of the metrics for which φ is a harmonic morphism. Another

reference for such examples is [7, Ch. 6].
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