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Abstract

The symmetry classification problem for wave equation on sphere is considered. Symmetry algebra is
found and a classification of its subalgebras, up to conjugacy, is obtained. Similarity reductions are per-
formed for each class, and some examples of exact invariant solutions are given.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

One of the significant applications of Lie symmetry groups is to achieve a complete classi-
fication of symmetry reductions of partial differential equations. The symmetry properties and
reductions of most of the fundamental equations of mathematical physics, with flat background
metric, have been well investigated, cf. [10–12]. In particular, the symmetry classification prob-
lem for a number of wave equations in flat space has been extensively studied [1–3,5,8,12,14].

This work is part of a research program to investigate natural equations of physics with non-
flat background metric, for example, of non-zero constant curvature. Here, we give a complete
symmetry analysis of wave equation on sphere.

The aim is to classify symmetry reductions of the wave equation on sphere, which is

utt = uxx + (cotx)ux + 1

sin2 x
uyy. (1.1)
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As described in [15], the classification of group invariant solutions requires a classification of
subalgebras of the symmetry algebra into conjugacy classes under the adjoint action of the sym-
metry group. The symmetry algebra of Eq. (1.1) is determined in Section 2. The classification
of subalgebras is also carried out in Section 2, which is then utilized in Section 3 to classify the
symmetry reductions of Eq. (1.1). For the cases where Eq. (1.1) is reduced to ODE, the symme-
try solutions of Eq. (1.1) are also discussed. As the symmetry methods are local, it is understood
that all solutions are considered only locally.

2. The symmetry algebra and classification of subalgebras

The method of determining the classical symmetries of a partial differential equation is stan-
dard which is described in many books, e.g., [6,9,13,16]. To obtain the symmetry algebra of
PDE (1.1), we take the infinitesimal generator of symmetry algebra of the form

X = ξ1(x, y, t, u)
∂

∂x
+ ξ2(x, y, t, u)

∂

∂y
+ ξ3(x, y, t, u)

∂

∂t
+ ϕ1(x, y, t, u)

∂

∂u
.

Using the invariance condition, i.e., applying the 2nd prolongation X[2] to Eq. (1.1), yields the
following system of 13 determining equations. The computations were performed using the pack-
age MathLie [4].

(ξ1)u = 0,

(ξ2)u = 0,

(ξ3)u = 0,

(φ1)u,u = 0,

cotx(ξ3)x − (ξ3)t,t + (ξ3)x,x + csc2 x(ξ3)y,y + 2(φ1)t,u = 0,

cotx(ξ2)x − (ξ2)t,t + (ξ2)x,x + csc2 x(ξ2)y,y − 2 csc2 x(φ1)y,u = 0,

csc2 xξ1 + cotx(ξ1)x − 2 cotx(ξ3)t − (ξ1)t,t + (ξ1)x,x + csc2 x(ξ1)y,y − 2(φ1)x,u = 0,

−cotx(φ1)x + (φ1)t,t − (φ1)x,x − csc2 x(φ1)y,y = 0,

(ξ1)t − (ξ3)x = 0,

csc2 x(ξ1)y + (ξ2)x = 0,

−(ξ1)x + (ξ3)t = 0,

(ξ2)t − csc2 x(ξ3)y = 0,

cotxξ1 + (ξ2)y − (ξ3)t = 0.

The solution of determining equations gives the following infinitesimals,

ξ1 = k3 cosy + k4 siny,

ξ2 = cotx{k4 cosy − k3 siny} + k5,

ξ3 = k1,

φ1 = k2u + f (x, y, t)

where f (x, y, t) is a function satisfying Eq. (1.1).
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Hence the associated symmetry algebra of Eq. (1.1) is spanned by the vector fields

X1 = ∂

∂t
,

X2 = u
∂

∂u
,

X3 = cosy
∂

∂x
− cotx siny

∂

∂y
,

X4 = siny
∂

∂x
+ cotx cosy

∂

∂y
,

X5 = ∂

∂y
,

Xf = f
∂

∂u
.

The commutation relations of the Lie algebra G, determined by X1, X2, X3, X4, X5, are shown
in Table 1. The radical of G is R = 〈X1,X2〉 and Levi decomposition of G is given by

G = 〈X1,X2〉 ⊕ 〈X3,X4,X5〉
where the Lie algebra 〈X3,X4,X5〉 is so(3).

We use the scheme of Ovsiannikov [15, Section 14] for the classification of subalgebras of G
(up to conjugacy).

There is one class of 1-dimensional subalgebras of so(3) = 〈X3,X4,X4〉, whose represen-
tative is taken as X5. This is because SO(3) operates as isometries for the (negative definite)
Killing form, and the image of SO(3) is therefore the connected component of the conjugacy
group. For the classification up to conjugacy of 2-dimensional subalgebras of G = so(3) ⊕ R,
where R is 2-dimensional radical, we note that if L is 2-dimensional subalgebra then its image in

Table 1
Commutator table for the Lie algebra G

X1 X2 X3 X4 X5
X1 0 0 0 0 0
X2 0 0 0 0 0
X3 0 0 0 −X5 X4
X4 0 0 X5 0 −X3
X5 0 0 −X4 X3 0

Table 2
Classification of subalgebras of symmetry algebra G
Dimension Subalgebra

1-dimensional subalgebra L1 = 〈aX1 + bX2 + X5〉
L2 = 〈aX1 + bX2〉

2-dimensional subalgebra L3 = 〈aX1 + bX2,X5〉
L4 = 〈X1,X2〉

3-dimensional subalgebra L5 = 〈X3,X4,X5〉
L6 = 〈X1,X2,X5〉

4-dimensional subalgebra L7 = 〈aX1 + bX2,X3,X4,X5〉
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G/R ∼= so(3) is either zero-dimensional or one-dimensional as so(3) has no 2-dimensional subal-
gebras. The zero-dimensional case means that L = R. In the case that (L+R)/R ≡ L/(L∩R) is
one-dimensional we see that (L ∩ R) is one-dimensional. For X in R we look for all elements Y

of G so that 〈X,Y 〉 form a 2-dimensional algebra. The possibilities for the commutation relations
are [X,Y ] = 0 or [X,Y ] = X. Hence, we obtain the following representatives of the conjugacy
classes of subalgebras of the symmetry algebra G (see Table 2).

3. Symmetry reductions for wave equation

In this section we give a classification of symmetry reductions of PDE (1.1) with respect to
classification of subalgebras of G into conjugacy classes. It is clear that for ODEs a solvable
group leads to reduction of order which is equal to dimension of the group, but for PDEs one has
to introduce new dependent and independent variables so that the problem does not degenerate to
constant solutions. The standard method used for this is by introduction of similarity variables.
These are new independent variables as basic invariant functions which do not involve the de-
pendent variables, and the dependent variables are defined implicitly involving invariants which
contain the original variables, see [7] for details. Sections 3.1, 3.2 and 3.3 provide illustrative
examples of reductions using similarity variables.

3.1. Reductions by 1-dimensional subalgebras

For each 1-dimensional subalgebra in the classification of subalgebras of G, we obtain the
similarity variables. The similarity variables are used to obtain the reduced PDE and the form of
the solutions of Eq. (1.1).

3.1.1. Subalgebra L1 = 〈aX1 + bX2 + X5〉
I. a 	= 0, b 	= 0:

The similarity variables are

ξ1 = x, ξ2 = y − t

a

and

V (ξ1, ξ2) = lnu − b

a
t.

Substitution of similarity variables in Eq. (1.1) and using chain rule implies that the solution
of Eq. (1.1) is of the form

u = e
bt
a eV (ξ1,ξ2)

where V (ξ1, ξ2) satisfies the following reduced PDE in 2 independent variables

1

a2

{
∂2V

∂ξ2
2

+
(

∂V

∂ξ2
− b

)2}

= ∂2V

∂ξ2
1

+
(

∂V

∂ξ2
1

)2

+ cot ξ1
∂V

∂ξ1
+ 1

sin2 ξ1

{
∂2V

∂ξ2
2

+
(

∂V

∂ξ2

)2}
.
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II. a 	= 0, b = 0:
The similarity variables are

ξ1 = x, ξ2 = y − t

a

and

V (ξ1, ξ2) = u.

Substitution of similarity variables implies that the solution of Eq. (1.1) is of the form

u = V (ξ1, ξ2)

where V (ξ1, ξ2) satisfies the following reduced PDE in 2 independent variables

1

a2

∂2V

∂ξ2
2

= ∂2V

∂ξ2
1

+ cot ξ1
∂V

∂ξ1
+ 1

sin2 ξ1

∂2V

∂ξ2
2

.

III. a = 0, b 	= 0:
The similarity variables are

ξ1 = x, ξ2 = t

and

V (ξ1, ξ2) = lnu − by.

Hence, the solution of Eq. (1.1) is of the form

u = ebyeV (ξ1,ξ2)

where V (ξ1, ξ2) satisfies the following reduced PDE

∂2V

∂ξ2
2

+
(

∂V

∂ξ2

)2

= ∂2V

∂ξ2
1

+
(

∂V

∂ξ1

)2

+ cot ξ1
∂V

∂ξ1
+ b2

sin2 ξ1
.

IV. a = 0, b = 0:
In this case, the symmetry is X = ∂

∂y
, which obviously leads to y-invariant solutions. Pre-

cisely, the similarity variables are

ξ1 = x, ξ2 = t, V (ξ1, ξ1) = u

and Eq. (1.1) is reduced to PDE

∂2V

∂ξ2
2

= ∂2V

∂ξ2
1

+ cot ξ1
∂V

∂ξ1
.

3.1.2. Subalgebra L2 = 〈aX1 + bX2〉
I. a 	= 0, b 	= 0:

The similarity variables are

ξ1 = x, ξ2 = y

and

V (ξ1, ξ2) = lnu − b
t.
a
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The solution is of the form

u = e
bt
a eV (ξ1,ξ2)

where V (ξ1, ξ2) satisfies the following reduced PDE

b2

a2
= ∂2V

∂ξ2
1

+
(

∂V

∂ξ1

)2

+ cot ξ1
∂V

∂ξ1
+ 1

sin2 ξ1

(
∂2V

∂ξ2
2

+
(

∂V

∂ξ2

)2)
.

II. a 	= 0, b = 0:
The symmetry X = ∂

∂t
leads to time-invariant solutions. Precisely, the similarity variables

are

ξ1 = x, ξ2 = y, V (ξ1, ξ2) = u

and Eq. (1.1) is reduced to

∂2V

∂ξ2
1

+ cot ξ1
∂V

∂ξ1
+ 1

sin2 ξ1

∂2V

∂ξ2
2

= 0.

III. a = 0, b 	= 0:
In this case, the symmetry is X = bu ∂

∂u
which leads to constant solution.

3.2. Reduction by 2-dimensional subalgebra

Double reduction of variables is performed for each 2-dimensional subalgebras in the classi-
fication of subalgebras of G. This allows us to write the PDE (1.1) as ODE. The exact solutions
of ODE are discussed in each case.

3.2.1. Subalgebra L3 = 〈aX1 + bX2,X5〉
I. a 	= 0, b = 0:

The similarity variables for X5 (taken as first symmetry) are

ξ1(x, y, t) = x, ξ2(x, y, t) = t and V (ξ1, ξ2) = u.

These reduce Eq. (1.1) to

∂2V

∂ξ2
2

= ∂2V

∂ξ2
1

+ cot ξ1
∂V

∂ξ1
. (3.1)

Since the symmetry aX1 of Eq. (1.1) commutes with X5, it is inherited by Eq. (3.1). Hence

V = aX1(ξ1)
∂

∂ξ1
+ aX1(ξ2)

∂

∂ξ2
+ aX1(V )

∂

∂V
= a

∂

∂ξ2

is a symmetry of PDE (3.1). Its similarity variables are

r(ξ1, ξ2) = ξ1,

w(r) = V

which reduce PDE (3.1) to ODE

d2w

2
+ cot r

dw = 0.

dr dr
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This can be integrated to give the solution

w(r) = k1 ln(csc r − cot r) + k2

or

u = k1 ln(cscx − cotx) + k2

where k1, k2 are integration constants.
II. a = 0, b 	= 0:

In this case, the symmetry bX2 = bu ∂
∂u

leads to constant solution.
III. a 	= 0, b 	= 0:

The first symmetry X5 reduces Eq. (1.1) to

∂2V

∂ξ2
2

= ∂2V

∂ξ2
1

+ cot ξ1
∂V

∂ξ1
(3.2)

where

ξ1(x, y, t) = x, ξ2(x, y, t) = t, V (ξ1, ξ2) = u

are similarity variables for X5.
The second symmetry aX1 + bX2 is inherited by PDE (3.2), as it commutes with X5. Hence

V = a
∂

∂ξ2
+ bV

∂

∂V

is a symmetry of PDE (3.2). Its similarity variables are

r(ξ1, ξ2) = ξ1,

w(r) = lnV − b

a
ξ2

which transform PDE (3.2) to ODE

d2w

dr2
+

(
dw

dr

)2

+ cot r
dw

dr
= b2

a2
.

Setting z = w′, we obtain the first order ODE

z′ + z2 + cot rz = b2

a2

which is Riccati equation.

3.2.2. Subalgebra L4 = 〈X1,X2〉
The symmetry X2 = u ∂

∂u
leads to trivial invariant solutions.

3.3. Reduction by 3- and 4-dimensional subalgebras

The step-by-step multiple reduction using similarity variables is not possible if the reduced
equation fails to inherit symmetries of the original equation. This happens when step-by-step
reduction is tried for L5 and L7. An efficient approach for such situations is to find the joint
invariants of the subalgebra and perform the multiple reduction in one go, see [7, Section 8.3]
for details.
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3.3.1. Subalgebra L5 = 〈X3,X4,X5〉
We find the joint invariants of

X3 = cosy
∂

∂x
− cotx siny

∂

∂y
+ 0

∂

∂t
+ 0

∂

∂u
,

X5 = 0
∂

∂x
+ ∂

∂y
+ 0

∂

∂t
+ 0

∂

∂u
,

X4 = siny
∂

∂x
+ cotx cosy

∂

∂y
+ 0

∂

∂t
+ 0

∂

∂u
.

From the rank of the matrix( cosy − cotx siny 0 0
0 1 0 0

siny cotx cosy 0 0

)
,

we see that there will be 2 independent invariants. These joint invariants are found below.
Take I = I (x, y, t, u). Solving the characteristic system

dx

cosy
= dy

−cotx siny
= dt

0
= du

0

for LX3I = 0 gives the constants sinx siny, t and u. Setting r = sinx siny gives I = I (r, t, u)

as an invariant function for X3.
If I is also invariant under X5 then LX5I = 0 or ∂

∂y
(I (r, t, u)] = 0. This implies I = I (t, u)

which is also an invariant for X4.
The joint invariant I = I (t, u) allows us to introduce new independent and dependent vari-

ables ξ = t, V (ξ) = u. In new variables, the PDE (1.1) reduces to ∂2V

∂ξ2 = 0 which corresponds to
rotationally symmetric solution of wave equation on sphere.

3.3.2. Subalgebras L6 = 〈X1,X2,X5〉 and L7 = 〈aX1 + bX2,X3,X4,X5〉
For L6, the invariant solutions are constant. There are no new non-trivial invariant solutions

corresponding to L7, which can be seen by an argument similar to the above.
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