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SUMMARY.- We obtain a characterization of totally geodesic horizontally conformal

maps by a method which arises as a consequence of the Bochner technique for harmonic

morphisms. As a geometric consequence we show that the existence of a non-constant

harmonic morphism φ from a compact Riemannian manifold Mm of non-negative Ricci

curvature to a compact Riemannian manifold of non-positive scalar curvature, forces Mm

either to be a global Riemannian product of integral manifolds of vertical and horizontal

distributions or to be covered by a global Riemannian product.

1. Introduction

A smooth map φ : M→N between Riemannian manifolds is called a harmonic

morphism if it preserves germs of harmonic functions i.e. if f is a real valued har-

monic function on an open set V ⊆ N then the composition f ◦ φ is harmonic on

φ−1(V ) ⊆ M . Due to a characterization obtained by B. Fuglede [6] and T. Ishihara

[9], harmonic morphisms are precisely the harmonic maps which are horizontally

(weakly) conformal.

J. Vilms in [13] carried out a study of totally geodesic maps with emphasis on

totally geodesic Riemannian submersions and showed that these can be characterized

as Riemannian submersions with totally geodesic fibres and integrable horizontal dis-

tribution. This paper is aimed to achieve an analogous characterization of totally

geodesic horizontally conformal maps and to obtain geometric consequences of this

characterization in the study of totally geodesic horizontally conformal maps. The

method of proof uses , as tools, the Weitzenböck formula for harmonic morphisms de-

veloped by the author in [11] and the fundamental equations of horizontally conformal

submersions studied by S. Gudmundsson in [7].
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The remaining part of this section presents a brief introduction to harmonic mor-

phisms, the Bochner technique for harmonic morphisms and the fundamental equa-

tions of horizontally conformal submersions.

1.1. Harmonic morphisms. Recall that a map φ : Mm→Nn is harmonic if and

only if its tension field τ(φ) = trace∇dφ vanishes. The reader is referred to [2], [3]

and [4] for a comprehensive account of harmonic maps.

Definition 1.1. A map φ : Mm→Nn between Riemannian manifolds is called a har-

monic morphism if f ◦φ is a real valued harmonic function on φ−1(V ) ⊆ M for every

real valued function f which is harmonic on an open subset V of N with φ−1(V )

non-empty.

For a smooth map φ : Mm→Nn, let Cφ = {x ∈ M | rank dφx < n} be its critical set.

The points of the set M \Cφ are called regular points. For each x ∈ M \Cφ, the vertical

space T V
x M at x is defined by T V

x M = Ker dφx. The horizontal space TH
x M at x is

given by the orthogonal complement of T V
x M in TxM so that TxM = T V

x M ⊕ TH
x M .

Definition 1.2. A smooth map φ : (Mm, 〈·, ·〉M)→(Nn, 〈·, ·〉N) is called horizontally

(weakly) conformal if dφ = 0 on Cφ and the restriction of φ to M \Cφ is a conformal

submersion, that is, for each x ∈ M \ Cφ, the differential dφx : TH
x M → Tφ(x)N is

conformal and surjective. This means that there exists a function λ : M \ Cφ → R+

such that

〈dφ(X), dφ(Y )〉N = λ2〈X, Y 〉M ∀X, Y ∈ THM.

By setting λ = 0 on Cφ, we can extend λ : M → R+
0 to a continuous function on

M such that λ2 is smooth, in fact λ2 = ‖dφ‖2/n. The function λ : M → R+
0 is called

the dilation of the map φ. Harmonic morphisms can be characterized as follows.

Theorem 1.3 ([6], [9]). A map φ : (Mm, 〈·, ·〉M)→(Nm, 〈·, ·〉N) is a harmonic mor-

phism if and only if it is a harmonic and horizontally conformal map.

We refer the reader to [1, 6, 14] for an introduction and basic properties of harmonic

morphisms. For an updated list of harmonic morphisms bibliography, see [8].

In [11], the author developed a Bochner technique for harmonic morphisms and

obtained the following Weitzenböck formula for harmonic morphisms between Rie-

mannian manifolds.
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Proposition 1.4. Let Mm and Nn be Riemannian manifolds. Let φ : Mm→Nn be

a harmonic morphism with dilation λ. Then

(1.1)
n

2
∆λ2 = −‖∇dφ‖2 + λ4ScalN − λ2ScalM|H

where

ScalM|H =
n∑

s=1

Ricci(es, es),

∆ denotes the Hodge-deRham Laplacian on functions on M and (es)
n
s=1, (es)

m
s=n+1 are

orthonormal bases of TH
x M and T V

x M respectively, so that (es)
m
s=1 is an orthonormal

basis of TxM = T V
x M ⊕ TH

x M .

1.2. Fundamental equations of horizontally conformal submersions. The

fundamental equations of horizontally conformal submersions were established by

S. Gudmundsson in [7] as a generalization of the fundamental equations of submer-

sions found by O’Neill [12].

We recall that the fundamental tensors T , A of a submersion are defined as

TEF = H∇VEVF + V∇VEHF

AEF = H∇HEVF + V∇HEHF

where E,F are vector fields on Mm and H, Vdenote the orthogonal projections on

the horizontal and vertical spaces respectively.

Notice that T restricted to vertical vector fields gives the second fundamental form

of the fibres of the submersion and it can be easily seen that T = 0 is equivalent to

the condition that the fibres are totally geodesic submanifolds.

For a horizontally conformal submersion it was shown that the following relation

holds.

Proposition 1.5. Let φ : (Mm, 〈·, ·〉M)→(Nn, 〈·, ·〉N) be a horizontally conformal

submersion with dilation λ and X,Y be horizontal vectors, then

AXY =
1

2
{V [X, Y ]− λ2gradV(

1

λ2 )}.

From the above proposition it is obvious that in case of vertically homothetic hori-

zontally conformal submersion, the tensor A of the horizontally conformal submersion

reduces to the tensor A of a Riemannian submersion i.e. it becomes the integrability

tensor of the horizontal distribution. On the other hand we see that the vanish-

ing of A identically, implies that the horizontally conformal submersion is vertically

homothetic.
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Here we only state the curvature equations relevant to our work and refer the

reader to [7] for other fundamental curvature equations of horizontally conformal

submersions.

Lemma 1.6. Let m > n≥2 and φ : (Mm, 〈·, ·〉M)→(Nn, 〈·, ·〉N) be a horizontally

conformal submersion, with dilation λ : M→R+. If X, Y are horizontal and U, V are

vertical vectors, then

〈RM(X,U)X, U〉M = 〈(∇UA)XX, U〉M + 〈AXU,AXU〉M

− 〈(∇XT )UX, U〉M − 〈TUX, TUX〉M

+ λ2〈AXX, U〉M〈U, gradV(
1

λ2 )〉M .

〈RM(X,Y )X, Y 〉M =
1

λ2 〈RN(X̃, Ỹ )Ỹ , X̃〉N − 3

4
‖V [X, Y ]‖2

+
λ2

2
[〈X, Y 〉M〈∇Y grad

1

λ2 , X〉M − 〈Y, Y 〉M〈∇Xgrad
1

λ2 , X〉M

+ 〈Y,X〉M〈∇Xgrad
1

λ2 , Y 〉M − 〈X, X〉M〈∇Y grad
1

λ2 , Y 〉M ]

+
λ4

4
[‖X∧Y ‖2‖grad(

1

λ2 )‖2 + ‖X(
1

λ2 )Y − Y (
1

λ2 )X‖2].

2. Totally geodesic horizontally conformal maps

Definition 2.1. A map φ : Mm→Nn is totally geodesic if and only if its second

fundamental form ∇dφ vanishes, where

∇dφ(X, Y ) = (∇Xdφ)Y = ∇φ−1TN
X dφ · Y − dφ(∇M

X Y )

for X,Y ∈ C(TM).

These maps are characterized as the maps which take geodesics of Mm linearly to

geodesics of Nn.

Lemma 2.2. A totally geodesic map has constant rank and constant energy density

e(φ), where e(φ) = 1
2
‖dφ‖2. In particular, a totally geodesic horizontally conformal

map has constant dilation.

Proof. cf. [5, page-15]. ¤

In this section we develop a relation between the second fundamental form and

the fundamental tensors A and T of a horizontally conformal submersion, in order to
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achieve the following characterization of totally geodesic horizontally conformal maps

between Riemannian manifolds.

Theorem 2.3. (Characterization of totally geodesic horizontally conformal

maps) Let m > n≥2 and φ : (Mm, 〈·, ·〉M)→(Nn, 〈·, ·〉N) be a horizontally conformal

map. Then φ is totally geodesic if and only if φ has constant dilation, totally geodesic

fibres and integrable horizontal distribution.

Before proving Theorem 2.3 we will prove a few results, needed in the proof of

Theorem 2.3. A necessary curvature relation between ScalM|H and ScalN, for a

horizontally conformal map φ : Mm→Nn, is given by the following.

Proposition 2.4. Let m > n≥2 and Mm,Nn be Riemannian manifolds. Let φ :

(Mm, 〈·, ·〉M)→(Nn, 〈·, ·〉N) be a horizontally conformal submersion, with dilation λ :

M→R+. Then

ScalM|H = λ2ScalN +
n∑

s,t=1

{ − 3

4
‖V [et, es]‖2

+
λ2

2
[−〈∇etgrad(

1

λ2 ), et〉M − 〈∇esgrad(
1

λ2 ), es〉M ]

+
λ4

4
[‖grad(

1

λ2 )‖2 + ‖et(
1

λ2 )− es(
1

λ2 )‖2]}

+
n∑

s=1

m∑
t=n+1

{‖Aeset‖2 − 〈(∇esT )etes, et〉M − ‖Tetes‖2}

−
m∑

t=n+1

{λ2

2
〈∇etgradV(

1

λ2 ), et〉M +
λ2

2
[〈gradV(

1

λ2 ), et〉M ]2}.

where

ScalM|H =
n∑

s=1

Ricci(es, es)

for an orthonormal basis (es)
m
s=1 of TxM such that (es)

n
s=1, (es)

m
s=n+1 are orthonormal

basis of TH
x M and T V

x M respectively.

Proof. We can write ScalM|H as

ScalM|H =
n∑

s=1

Ricci(es, es)

=
n∑

s,t=1

〈RM(et, es)et, es〉M +
n∑

s,=1

m∑
t=n+1

〈RM(et, es)et, es〉M(2.1)

Computing the right hand side using Lemma 1.6 gives the required relation. ¤
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The following result on totally geodesic submersion will be needed later.

Lemma 2.5. Let φ : (Mm, 〈·, ·〉M)→(Nn, 〈·, ·〉N) be a submersion. If φ is totally

geodesic then the fibres are totally geodesic.

Proof. Let Fx = φ−1(φ(x)) be the fibre at x∈M . Let i : Fx→M be the inclusion map,

then φ◦i is constant. Therefore, for U, V ∈ T V
x M

∇d(φ◦i)(U, V ) = 0

⇒ dφ·∇di(U, V ) = −∇dφ(diU, diV ) = 0

⇒ ∇di(U, V ) = 0

Hence the fibres are totally geodesic. ¤

The integrability of the horizontal distribution of a totally geodesic horizontally

conformal map is achieved by combining Proposition 2.4 and the Weitzenböck formula

for harmonic morphisms. Precisely, we have

Lemma 2.6. Let m > n≥2 and φ : (Mm, 〈·, ·〉M)→(Nn, 〈·, ·〉N) be a totally geodesic

horizontally conformal map. Then the horizontal distribution is integrable.

Proof. Knowing that a totally geodesic horizontally conformal map has totally geo-

desic fibres and constant dilation, we have from Proposition 2.4

ScalM|H = λ2ScalN − 3

4

n∑
s,t=1

‖V [et, es]‖2 +
n∑

s=1

m∑
t=n+1

‖Aeset‖2.

Using in Weitzenböck formula for harmonic morphisms we have

3

4

n∑
s,t=1

‖V [et, es]‖2 =
n∑

s=1

m∑
t=n+1

‖Aeset‖2

or we can write as

(2.2) 3
n∑

s,t=1

‖Aetes‖2 =
n∑

s=1

m∑
t=n+1

‖Aeset‖2.

But we know that

(2.3)
n∑

s,t=1

‖Aetes‖2 =
n∑

s=1

m∑
t=n+1

‖Aeset‖2
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as follows.
n∑

s,t=1

‖Aetes‖2 =
n∑

s,t=1

m∑
u=n+1

〈Aetes, eu〉〈Aetes, eu〉

=
n∑

s,t=1

m∑
u=n+1

〈Aeteu, es〉〈Aeteu, es〉

=
n∑

t=1

m∑
u=n+1

‖Aeteu‖2.

Comparing Equations 2.2 and 2.3, we have
n∑

s,t=1

‖Aetes‖2 = 0.

Hence, the horizontal distribution is integrable. ¤

Proof of Theorem 2.3:

⇒
Follows from Lemma 2.5, Lemma 2.6 and Lemma 2.2.

⇐
If φ has totally geodesic fibres, integrable horizontal distribution and constant dilation

then it follows from Proposition 2.4 that

(2.4) ScalM|H = λ2ScalN

Substituting in Weitzenböck formula for harmonic morphism we obtain ∇dφ = 0.

Having seen that a totally geodesic horizontally conformal map has integrable hor-

izontal distribution, we consider the horizontal foliation on Mm and obtain the geo-

metric consequences of the above characterization on the horizontal and vertical fo-

liations.

Theorem 2.7. Let φ : (Mm, 〈·, ·〉M)→(Nn, 〈·, ·〉N) be a totally geodesic horizontally

conformal map between Riemannian manifolds with m > n≥2. Then

(1) The horizontal foliation is totally geodesic in Mm.

(2) The vertical foliation is Riemannian with bundle like metric.

Proof.

(1) From Theorem 2.3, the horizontal distribution is integrable and the dilation

λ is constant, therefore, we have a horizontal foliation on Mm which is totally

geodesic as follows.
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Let X, Y be horizontal vectors, then Proposition 1.5 implies that

(2.5) V∇M
XY = AXY = 0.

Let αL denote the second fundamental form of a leaf L of the horizontal

foliation, then

(2.6) αL(X, Y ) = V∇M
XY = 0.

Hence every leaf of horizontal foliation is a totally geodesic submanifold of M .

(2) It’s shown in [14] that (1)⇒(2).

¤

Remark 2.8. Since a totally geodesic horizontally conformal map has totally geo-

desic fibres. Therefore, switching over the role of vertical and horizontal foliations in

Theorem 2.7 we observe that in case of a totally geodesic horizontally conformal map,

the horizontal foliation is also Riemannian. Hence, we conclude that a totally geo-

desic horizontally conformal map gives rise to orthogonal foliations on Mm, namely

horizontal and vertical, which are Riemannian with totally geodesic leaves.

A further application of Theorem 2.3 yields the following result regarding existence

of totally geodesic harmonic morphisms.

Lemma 2.9. A harmonic morphism φ : Mm→Nn is totally geodesic if and only if

kerdφ is holonomy invariant and φ has constant dilation.

Proof. The only if part follows from Lemma 2.2 and [13, page-74].

Conversely suppose that kerdφ is holonomy invariant. Then the horizontal and

vertical distributions are integrable with totally geodesic integral manifolds cf. [10,

pages-181,182] . The result then follows from Theorem 2.3. ¤

The above analysis combined with the applications of the Bochner technique pre-

sented in [11] lead to the following decomposition result for a compact Riemannian

manifold of non-negative Ricci curvature, admitting a harmonic morphism.

Theorem 2.10. Let (Mm, 〈·, ·〉M) be a compact Riemannian manifold with RicciM ≥
0 and (Nn, 〈·, ·〉N) be a Riemannian manifold with ScalN≤0. Let φ be a harmonic

morphism from Mm to Nn. Then either Mm is a global Riemannian product or it is

covered by a global Riemannian product.
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Proof. By [11, Theorem 2.5] φ is totally geodesic. If Mm is simply-connected then

proof follows from Theorem 2.7, Lemma 2.9 and [10, page-187].

Suppose Mm is non-simply-connected. Let M̃ be its universal covering space. Since

φ can be lifted to a totally geodesic horizontally conformal map φ̃ from M̃ , therefore,

the proof follows by repeating the above argument. ¤

Acknowledgments. The author is grateful to John C. Wood and S. Gudmundsson
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