RESTRICTIONS ON HARMONIC MORPHISMS
M. T. MUSTAFA

ABSTRACT. We consider horizontally (weakly) conformal maps ¢ between Rie-
mannian manifolds and calculate a formula for the Laplacian of the dilation of ¢,
using the language of moving frames. Applying this formula to harmonic horizon-
tally (weakly) conformal maps or equivalently to harmonic morphisms we obtain
a Weitzenbock formula similar to [17], and hence vanishing results for harmonic
morphisms from compact manifolds of positive curvature. Further, a method is
developed to obtain restrictions on harmonic morphisms from some non-compact
and non-positively curved domains. Finally, a discussion of restrictions on harmonic
morphisms between simply connected space forms is given.

1. INTRODUCTION

The maps under consideration are harmonic morphisms between Riemannian man-
ifolds, i.e. the maps which preserve germs of harmonic functions. Such maps are
characterized as a subclass of harmonic maps (see below). In [17], the author pre-
sented a Bochner technique for harmonic morphisms by extending the Bochner type
formula for harmonic maps [6] and gave its consequences for harmonic morphisms
from compact domain manifolds.

This note has a twofold purpose. First is to represent the Bochner type technique
for harmonic morphisms in the language of frames. Secondly, to improve the results of
[17] by obtaining applications, of the Bochner type formula, for harmonic morphisms
from a larger class of domain manifolds. Thus along with non-existence results of
[17], we get restrictions on harmonic morphisms from compact as well as non-compact
manifolds. This allows us to get a clearer picture of the theory of harmonic morphisms

between simply-connected space forms. For example, we show in the final section

1. There exist no non-constant harmonic morphisms ¢: R"™—H".

2. Let ¢: E™—=E" be a harmonic morphism with the dilation X. If (E™ E") =
(H™,H") then \* < ((m — 1)/(n — 1)). On the other hand if ¢ is submersive
and (E™ E") = (S™,S") then A\*> > ((m —1)/(n — 1)).

After giving the necessary framework in Sections 2, 3 we compute the Laplacian

in Section 4. Section 5 consists of the results on restrictions on harmonic morphisms
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between general Riemannian manifolds while the restrictions on harmonic morphisms

between simply-connected space forms are discussed in Section 6.

2. NOTATION AND PRELIMINARIES

In this section, after fixing the notation we explain some fundamental relations
which will be used repeatedly in the subsequent sections.

Let ¢: (M™,g)—(N",h) be a smooth mapping from an m-dimensional Riemann-
ian manifold with the metric g to an n-dimensional Riemannian manifold with the
metric i and denote the pull back bundle on M by £ = ¢ 'T'N. Throughout this
article we assume the following conventions, unless otherwise stated.

The indices range as: 1 < a,b,c < m; 1 <,9,k <n; n+1<apb,7.

The operators on the bundles T'M, T'N, F will be denoted respectively by the su-
perscripts M, N, ¢, e.g. the respective connections will be denoted as VM, V¥,
Ve,

With the above setting, the following relations are well known.

(2.1): Let {X,}™,, {Y:}, be local orthonormal framings on M, N respectively and
{ei}"_; be the induced framing on F defined by e; = Y; 0 ¢ then there exist smooth
local coframings {w, }7,, {n:}=, and {¢*n; }-y on T'M, T'N and E respectively such
that (locally)

g= sz and h = an
a=1 =1
The corresponding first structure equations are:
dwg = Wy N wp Wab = —Wha
b=1
dni = n; A i = —Nji
j=1

d(¢™n:) = qu*m AN i P = —d

where the unique 1-forms wgp, 1;5, @™ ni; are the respective connection forms. The

second structure equations are as follows.

dwqp = Zwac A wes + 04 dni; = ka A g+ QL

c=1 k=1

d(™ i) =Y ™ ni A ey + 67
k=1
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where the curvature 2-forms are given by

1 ¢ 1
Q%:—§ZR%decAwd and Qg:—§Zngmk/\m.

c,d=1 k=1

(2.2): The pull back map ¢* and the push forward map ¢. can be written as

o' = mewa for unique functions f;, on U C M.
a=1

n

Ox = Zei @ ¢ = Zmeei R wy.

=1 i=1 a=1
Note that ¢, is a section of the vector bundle ¢='T'N @ T*M.

(2.3): The covariant differential operators are represented as

VX, = Y wa0 X, VY= 0V
b=1

i=1
m

and V', = -— g Weq @ We, where V* is connection on T*M.

c=1

Furthermore, the induced connection V? on E is

Voer=> Y (1ij(Ye) 0 0) € @ frawa.

j,k=1la=1
This can be checked by using § (2.2) and above in the definition of the pull back
connection i.e. V%;(X) = Ve = (V¥ xY;)od for X € C(TM).
(2.4): The components of the Ricci tensor and scalar curvature are defined respec-

tively by
acbe

RM = zm:RM and Scal” = iRQﬁ
c=1 a=1

(2.5): Given a function f: M — R, there exist unique functions f; = fi. such that

(21) dfc - Zfbwcb = chbwb
b=1 b=1

where f. = df(X.) for a local orthonormal frame {X.}7 .
Proof. Taking the exterior derivative of df = >~ | f.w. and using structure equations,

we have

[

dfc A we + Zfbcwb A wbc]
b=1

o
Il
—

[

o
Il
—

(dfe = frwes) A wc] .
b=1
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Hence by Cartan’s lemma, cf. [20], there exist unique functions f., = fi. such that

dfc - Zfbwcb = chbwb-
b=1 b=1

]
Lemma 2.1. The Laplacian of a function f : M — R salisfies
—Af =) V(X Xo) =) fe
where the functions f.. are deﬁnedczbly FEquation 2.1. B
Proof. First notice that
Vdf(Xe, Xe) = (Vx,df)Xe = Xa(df(X.)) = df(VVy, X.)
- (dfc - Zfbwcb) (Xa) =D faron(Xa).
b=1 b=1
Hence Vdf (X., X.) = fe. O

3. SECOND FUNDAMENTAL FORM, HARMONIC MAPS AND HARMONIC MORPHISMS

Let ¢: M— N be a smooth map. As seen above, ¢, is a section of ¢~ T'N @ T*M.
If V denotes the connection on the bundle ¢~'T'N @ T*M then the quadratic form
Vo, is called the second fundamental form of ¢.

Lemma 3.1. Keeping the notation of § (2.2), there exist unique symmetric functions
fiab = fiba on U C M such that (locally) the second fundamental form of a map ¢ is
given by

@qb* = Z Z fiabei & Wwp & Wy
1=1a,b=1
where the components f;q satisfy

(3.1) D Favwr = dfia + Y Frd i+ > fina
=1 i=1 =1

Proof. Differentiating

qb* = Zz.fiaei ¥ Wq

i=1 a=1

we have
Vo =YY [V ® fuwa+ € @ dfia @ wa + fiat;s @ VVw,]
i=1 a=1

{(Mi;(Yr) 0 @) €; @ frbw, } @wa + € @ dfia @ wy + fiati @ Z(wab @ wy)

1 b=1

= > | fua

1,0 7,k=1b

m
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Noticing that

Z Z Jiafro (nij(ye) o @) €; = Z Z FiaTwn (nji(yx) 0 @) €

i7j7k:1a7b:1 i,j,k:la,b:l
and using

O = qu 77]2 Xb wb Zkab 77]2 Yk )

b=1 k=1
we get the required relatlon. The uniqueness and symmetry in a,b of the functions

Jiap follows by applying Cartan’s lemma, cf. [16, page-3]. O

Definition 3.2. A smooth map ¢: M— N is called totally geodesic if its second fun-

damental form vanishes i.e. if f;,;, = 0.

The tension field T(¢) of a smooth map ¢, as defined by Eells-Sampson in [6], is the
vector field given by traceVe,.

Definition 3.3. [6] A smooth map ¢: M—N is said to be harmonic if and only if
it extremizes the associated energy integral E(¢) = %fg || s |[P0M for every compact
domain Q) C M.

It is well-known, cf. [6, 4, 5], that a map ¢ is harmonic if and only if its tension
field is zero, i.e. if and only if ) fisa = 0.

The notions of horizontally conformal maps and harmonic morphisms were formally
introduced independently by B. Fuglede [8] and T. Ishihara [13]. In a sense, the former
can be thought as a generalization of the concept of Riemannian submersions and the
latter can be thought as a special class of harmonic maps. Here we present the basic
definitions, and refer to [8, 1, 21] for the fundamental results and properties. An
account of the theory of harmonic morphisms in the language of moving frames is
given in [3]. An updated list of harmonic morphisms bibliography can be found on
the INTERNET by linking to [12].

For a smooth map ¢: M™—=N", let Cy = {& € M | rank¢,, < n} and let M*
denote the set M \ C.

Definition 3.4. Let ¢: (M™, g)—(N", h) be a smooth map. Choose U C M,V C N
with U C ¢7HV) and set ¢*(n;) = 3, fiawa, (notation as in § 2). Then ¢ is called
horizontally (weakly) conformalif there exists a function A > 0 on U such that A > 0
on U N M* with

fialia =20 1<a<m, 1<i,j<n

and A =0on UNCy.
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The function A is termed as the dilation of the horizontally (weakly) conformal

map. This definition is based on [3, §1], see [8] for an alternative description.

Remark 3.5.
1. The dilation A satisfies nA?* = ||¢.]|*.

2. ¢: M*— N" is submersive, i.e. ¢, has rank n everywhere on M*.
3. Given a horizontally (weakly) conformal map ¢: (M™, g)—(N"™, h) with dilation

A. For each @ € M*, we can choose an orthonormal coframing {w,}7" ; such that
(locally)

g= zn:w? + zm: W
=1

a=n+1
where {w;}™, is a local orthonormal coframing of the subbundle (Ker¢,)* which

satisfies Adw; = ¢™n; and {w,}h_, . is a local orthonormal coframing of Kere,.
We call the subbundles (Keré,)* and Kerg, as the horizontal and vertical sub-
bundles. Such a coframing is named, by R. L. Bryant [3], as ¢-adapted.

Hence, we see that for a horizontally (weakly) conformal map the functions
fia defined by ¢*n; = > fiaw, satisfy fi, = Adi, with respect to a ¢-adapted

coframing. This observation will be important in the next section.

Harmonic morphisms are maps which preserve the Laplace’s equation in the fol-

lowing sense.

Definition 3.6. A smooth map ¢: M™—N" is called a harmonic morphism if, for
every real-valued function f which is harmonic on an open subset V of N with ¢~ (V)

non-empty, f o ¢ is a real-valued harmonic function on ¢=*(V) C M.

These are related to harmonic maps and horizontally (weakly) conformal maps via
the following characterization, obtained in [8, 13].
A smooth map is a harmonic morphism if and only if it is harmonic and horizontally
(weakly) conformal.
In terms of local coframings, it can be stated as, see [3].

A smooth map ¢ is harmonic morphism if and only if locally it satisfies
(3.2) fiaa =0 and  fifia = AN20;;  for some function \? > 0
where X denotes the dilation of ¢ and fiue, fia, fia are as in § 2.

Although the above characterization says that harmonic morphisms may be viewed
as a subclass of harmonic maps, it is important to notice that in certain cases harmonic

morphisms have properties which are exactly dualto the properties of harmonic maps;
see explanation by J. C. Wood in [22].
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4. LAPLACIAN OF \?

Firstly it is reminded that the notation of previous sections will be followed through-
out this section.
Consider a horizontally (weakly) conformal map ¢ with dilation A\. We wish to

calculate —AM?, for which we need the following lemma.

Lemma 4.1. Let ¢: (M™,g)—(N",h) be a horizontally (weakly) conformal map with
dilation X. Then

1.
nd\ =23 N fiafisws
i=1ab=1
In particular, if ¢ is totally geodesic then X is constant; a well-known result cf. [4,
§3.1].
2. The differential of the functions fi., satisfies
1

4.1)
o\ + Y fiocwor + > fiowea + > Fiand i | Aws =Y fut + Y 670,
c=1 c=1 7=1 b=1

b=1 = / 7=1

(

If the 1-form on the left hand side of above equation is written as

(4.2) dfiap + mecwcb + Zficbwca + ijabqb*mi = mebcwc
c=1 c=1 7=1 c=1

then the functions fiuwe satisfy the following curvature identity.

(43) fiabc - fiacb — _ZfidRil\gbc - Z fjafkcfleé\ifkl
d=1 7,k,0=1
Proof.
1. Differentiating

nA? = 6P =)0 (fia)? (see §2.2)

i=1 a=1
we have

nd\* = zn:zm:Qfmdfm-

1=1 a=1

Using the expression for df;, from Lemma 3.1, we have

nd\* = ZZZ mefmbwb - mefjaéb*m‘i - Zfiafibwba
b=1 j=1 b=1

=1 a=1 =
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The last two terms vanish due to skew symmetry of wy, and ¢*n;;, and we get
the first part. The final statement follows from the fact that the functions f;u
are components of the second fundamental form of ¢.

2. Differentiation of Equation 3.1 implies
Z [dfiap N wy + fiapdwy] = O-I-Z [dfja N O™nji + fjadqb*mi]—l-z [dfis N wWia + findwsa] -
b=1 7=1 b=1
The following relations can be established easily, by using structure equations

and Equation 3.1.

mecw b N wp = mecdwcv

b,c=1

Zficbwca Nwp = _Z

b,c=1 c=1

IS it i Awy ==
Jj=1

b=1 j=1

dfic + Zf]cqb*nﬂ + Zfibwbc] A Wea s
j=1 b=1

dfja + kaaqb*ﬁkj + ijbwba] N @™ nji-
k=1 b=1

Now Equation 4.1 follows from using these relations and second structure equa-

tions in the above equation and from the observation
Z Jicwen N wpy = Z Jivwpe A wWegs Z Jea® s N @™nj = Z Fia®@ 6 N & i
b,c=1 b,c=1 7,k=1 7,k=1

To prove Equation 4.3 we use Equations 4.1, 4.2 to have

Z zabc - zacb wc A CUb Zfsz + Zfzcgi\g + QZf]aqb*Q;\zf
c=1 7=1

The result now follows directly from the definitions of the pull back map and

curvature forms.

O

With the above Lemma on hand, we proceed to compute the Laplacian.

Proposition 4.2. Let¢: (M™, g)—(N", h) be a horizontally (weakly) conformal map
with dilation X\. Then at x € M,

—SAN = }:}: Jiae) + fiaficea) +A§:RM MScal™.

i=1a,c=1

Proof. Recall from Lemma 2.1 that AN? satisfies

NV ¢
(4.4) S AN Q;ACC
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where the functions A% are determined by

(4.5) dA2) =) Nwa = My,
b=1 b=1

But from Lemma 4.1, the functions A} are

(46) )‘g = %Zz.fiafiab-

i=1 a=1

Hence
n

_ %ZZ ([fia fiae + Fradfiae]

i=1 a=1

Using Fquations 3.1,4.2 for df;,, dfi.. respectively, we can write
2 n m
d()\g) = gz Z [{fiacfiab + fiafiacb}wb - fiafiabwbc] .
1=1a,b=1

Substituting Equation 4.6 and the above equation in Equation 4.5 determines func-

tions )\zb as

cb - ZZ fzacfzab + flafmcb]

zlal

Hence from Equation 4.4

—%A)\Q ZZ fiae)® + fiafiace]

i=1a,c=1

Since the functions fi.p. satisty fiope = fivae we have

n
fzacc = Jicac = Jicca Zfldecac Z fjcfkcflaR%klv

5kiI=1
where we have used Equation 4.3 for the second equality. Thus we have the final

expression for the Laplacian as

—gA)\z ZZ Z{ zac ‘I’ fzafzcca + Z flaf]cfkcflaRﬂk[} + dz:;fiafidR%] .

i=1 a=1 Le=1 7.k, I=1

But we know from Remark 3.5 that (locally) we can choose a ¢-adapted framing for
a horizontally (weakly) conformal map such that f;, = Ad;,. The required expression

follows by writing —AM? for a ¢-adapted framing. O

From Lemma 4.1, we notice that Y _ ficcaws = 0 if ¢ is harmonic. Hence the charac-
terization of harmonic morphisms as harmonic horizontally (weakly) conformal maps

leads to the following Weitzenbock formula for harmonic morphisms.
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Corollary 4.3. Let ¢: (M™,g)—(N",h) be a harmonic morphism between Riemann-
ian manifolds. Then the dilation X of ¢ satisfies

(4.7) —gm? =573 (fuue)® + A?Scal™|y; — A'Scal®,
i=1a,c=1
where .
ScalM|y = ZR%
a=1

This Weitzenbock formula was also obtained in [17] but by a different method.

5. RESTRICTIONS ON MAPS FROM NON-POSITIVELY CURVED MANIFOLDS

A standard Bochner type argument applied to the Weitzenbock formula in Corol-
lary 4.3 led to the following restrictions on harmonic morphisms from positively curved

compact manifolds, as shown in [17].

Proposition 5.1. [17] Let ¢: M— N be a harmonic morphism between compact Rie-

mannian manifolds with dilation .

1. ¢ is totally geodesic if ScalM|H > 0 and Scal™ < 0. If at some point, either
Scal|y > 0 or Scal™ < 0 then ¢ is constant.

2. Suppose that ¢ is submersive and ScalM|H > A, 0< ScalN < B for A,B > 0.
If A% is bounded by

then ¢ is totally geodesic.

We refer the reader to [17, §3] for a number of examples which satisfy the above
hypothesis.
The standard Bochner type argument, though very powerful, is not quite useful in

analysing maps from non-positively curved manifolds. To overcome this constraint

we develop a scheme based on the following.

Lemma 5.2. Let ¢: (M™,g)—(N",h) be a non-constant harmonic morphism with
dilation \. If

(i) \* attains its maximum at * € M,

(ii) Ricci > -4 (A >0),

(iii) Scaly < —B (B> 0)

then A
N <n=—.

In paricular, if B> nA then ¢ canont be a Riemannian submersion.
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Proof. At the point x we have —AMX? < 0, therefore Corollary 4.3 implies that

AScal™ |y — A'Scal™ < =) " " (fi)? < 0.

i=1a,c=1

Combining this inequality with the hypothesis completes the proof. O

Similarly we can show:

Proposition 5.3. Let ¢: M™—N™ be a non-constant harmonic morphism such that
M is Ricci-flat and Scal¥ < —B, (B > 0). Then A\* does not attain its mazimum in
M.

For a compact domain we obtain

Theorem 5.4. Let M be a Ricei flat compact Riemannian manifold and N a Rie-
mannian manifold of constant non-positive scalar curvature. Then a non-constant

harmonic morphism ¢: M—N can exist only if N has locally zero scalar curvature.

Proof. By compactness of M, there exists a point x € M such that —AX? < 0. The

proof then follows by an argument similar to the proof of Lemma 5.2. U

A key step in obtaining further applications of Lemma 5.2 is to ensure that Condi-
tion (i) of the hypothesis is satisfied. For suitable spaces, for instance H™, R™, this
can be avoided by adapting a technique of [9, §5] to our situation. The main idea
is to exhaust (M™,g) = H™,R™ by concentric balls B, and then consider a suitable
conformally deformed metric § = p?g on B,, such that the restrictions on A? can be
obtained from the restrictions on the associated function A° = p~2g. The restrictions
on X’ are achieved by investigating the Laplacian of 3 with respect to ¢ and by

. 52 . . . . .
showing that A attains its maximum in B,. Precisely we have

Proposition 5.5 (Hyperbolic case). Let ¢: (B™, g)—(N", h) be a non-constant har-
monic morphism from a unit open ball such that g = (4/A(1 — r?)) >, dx2, with
r? =3 a2, is a melric of constant negative sectional curvature —A (A > 0). Sup-
pose that Scal™ < —B (A >0). Then the dilation X of ¢ is restricted as

A

3

Proof. Consider an open ball B, C B™ of radius o < 1, with the conformally deformed

N <n(m—1)

metric
2

. 402 = 5 a(l —r?) 2 5
9= Jrar—rra el = (702 —5 ) 9=r%
a=1

of constant negative sectional curvature —A.
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First notice that ¢: (B,, d)—(N", k) is not a harmonic morphism, since p is not a
constant function. However on B,, we can associate a function A with the dilation A
as

(a2 o rz)z

5\2 _ qu*H; _ ,0_2)\2 _ 2)\2‘

n a?(1 —r?)

(5.1)

Clearly, the associated function 3* attains its maximum on the compact set B, but
vanishes on the boundary. Hence 37 attains its maximum at = € B,.
A notational comment: The symbols, (used in previous sections), covered with a tilde
shall be considered with respect to the metric g, e.g. @, = pw, denote the connection
forms with respect to g.

If the functions f;I are defined by ¢*n, = >, f;a@a then f;I = (A/p)dis with respect
to a ¢-adapted coframing. Then as in Proposition 4.2, for a ¢-adapted coframing,
the Laplacian — A3 can be computed as

a3y

i=1a,c=1

N

e R )\2 )\4
(fiac)2 + fiaficca + ?SC31M|H — FSC&]N.

From [9, Theorem 5.1] we see that if ¢ is a harmonic map with respect to ¢ then
Y i ﬁaﬁ; > 0. Hence, we can apply the method used in the proof of Lemma 5.2

(above) to have

A2 A
—QScalM|H — —4ScalN <0
p p

or S\ZScalM|H — X\'Scal™ <0.

Now 1t is straight forward to show from this inequality that for all x € B,

~2 A
5.2 A< —1)—.
(5.2 < nfm —1)°%
As Equation 5.2 is true for every open ball B, of radius o and from Equation 5.1
lim A~ = A? we have A2 <n(m— 1)%. O

a—1
Say that the scalar curvature of a manifold N is negative and bounded away from
zero if there exists some € > 0 such that Scal™ < —e. Then for harmonic morphisms

from the Euclidean space we have

Theorem 5.6 (Euclidean case). Consider R™ with the standard metric g of zero
curvature. Then there exist no non-constant harmonic morphisms ¢: (R™, g)—(N", h)

such that N has negative scalar curvature bounded away from zero.

Proof. Suppose there exists a non-constant harmonic morphism ¢ with dilation A. As

before, consider an open ball B, C R™ of radius «, with the conformally deformed
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metric § = (a*/(a? — 7“2))29 = p’g of negative sectional curvature —4/a*. The
associated function A is given by

(53) 5\2 _ qu*H?; _ ,0_2)\2 _ <0é2 — T2>2 )\2‘

n o’

Then following a treatment similar to the above Proposition, along with an argument
used in the proof of [9, Theorem 5.2], i.e. harmonicity of ¢ implies > . fiafroea > 0,

we have
5\2 < n(m —1)4

- ca?

(5.4) VaoebB,.

Since Equation 5.4 holds for every B, of radius « and from Equation 5.3 lim 3=

a—00
we have A\* = 0, i.e. ¢ is constant; a contradiction. O
It is known that every compact Riemannian manifold N* (n > 3) admits a metric of

constant negative scalar curvarure, see [15].

Corollary 5.7. Let R™ be the Euclidean space with standard metric and N™ (n > 3)
be a compact Riemannian manifold. Then there exvists a metric h on N such that

there are no non-constant harmonic morphisms ¢: R”™— N with respect to h.

Remark 5.8. Theorem 5.6 combined with [11, Proposition 2.1] gives the non-existence
of non-constant harmonic morphisms from a non-simply-connected flat space form to

a Riemannian manifold of negative scalar curvature bounded away from zero.

6. RESTRICTIONS ON HARMONIC MORPHISMS BETWEEN SIMPLY CONNECTED
SPACE FORMS

The characterization of harmonic morphisms implies that harmonic morphisms are
solutions of an overdetermined system of partial differential equations. This makes
the classification study of harmonic morphisms difficult, even in simpler cases. In case
of space forms, a complete classification of harmonic morphisms from 3-dimensional
simply connected space forms to 2-dimensional simply connected space forms has
been found by Baird-Wood in [2]. For particular cases, some classification results are
known in [3, 7, 10, 14, 18, 19].

Here we present a table which can be utilized in eliminating the possible area
of classification of global harmonic morphisms between higher dimensional simply

connected space forms.

Theorem 6.1. Let E™ denote an m-dimensional simply connected space form with
standard metric of constant sectional curvature 0,1 or —1. Then we have the follow-

ing restrictions on global harmonic morphisms ¢: E™ —E" (m > n > 1) with dilation
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A.
‘ E™ ‘ E? ‘ Type ‘ Restrictions ‘
R™ | Any A? is a subharmonic function.
R™ | S | Any [10],. o caant h.cwe.totally geodesic fibres and integrable
horizontal distribution.
H* | Any ¢ is constant.
R” | Any [8], @ is constant.
S™ | S™ | Submersive | If ¢ is non-constant, then A\* > (m —1)/(n — 1).
H™ | Any [8], @ is constant.
R™ | Any If X # 0, then ¢ cannot be totally geodesic.
H" | S | Any [10],. o caant h.cwe.totally geodesic fibres and integrable
horizontal distribution.
H* | Any M <(m—-1)/(n—1).

Proof. The cases (E™,E") € {(R™ R"),(H",R")} follow from Corollary 4.3. The
cases (E™ E*) = (R”, H") or (H™,H") are due to Theorem 5.6, Proposition 5.5. For
(E™,E") = (S™,S") we see that if \* < (m—1)/(n—1) then from Proposition 5.1(2) ¢
is totally geodesic and hence must have constant dilation, totally geodesic fibres and
integrable horizontal distribution; a contradiction from the classification of harmonic

morphisms between spheres having constant dilation and totally geodesic fibres. [

Acknowledgments. The author is very grateful to S. Gudmundsson and J. C. Wood
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