
A REMARK ON HARMONIC MAPS TO A SURFACE

M. T. MUSTAFA (*)

Abstract. P. Baird in [2] studied harmonic maps from closed Riemannian 3-manifolds
to a surface and determined necessary conditions under which these maps become har-
monic morphisms. These necessary conditions are generalized for higher dimensional
domain manifolds. Furthermore, we discuss the case when these conditions are suffi-
cient as well as the cases when these are restricted.

1. Introduction

Harmonic morphisms are maps between Riemannian manifolds which preserve germs

of harmonic functions i.e. these (locally) pull back real-valued harmonic functions to

real-valued harmonic functions. These are characterized as harmonic maps which are

horizontally (weakly) conformal. Hence, harmonic morphisms can be viewed as a sub-

class of harmonic maps. Although harmonic mappings are a much wider class, a natural

question originating from the above fact is to determine conditions under which a har-

monic map reduces to a harmonic morphism. A step in this direction was taken by

P. Baird in [2], where he studied harmonic maps from compact 3-dimensional manifolds

to a surface and determined conditions on the domain manifold under which these maps

become harmonic morphisms.

The aim of this note is to extend this problem to higher dimensional domains and find

necessary conditions when a harmonic mapping from Riemannian manifolds of dimension

m ≥ 3 to a surface must be a harmonic morphism. The sufficiency and restrictions on

these conditions are also discussed.

2. Harmonic maps and harmonic morphisms

Let φ : M → N be a smooth map. Then the tension field τ(φ) of φ, as defined by

Eells-Sampson in [5], is the vector field given by trace∇̃dφ.
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Definition 2.1. A smooth map φ : M → N is said to be harmonic if and only if it

extremizes the associated energy integral E(φ) =
∫
Ω

e(φ)dvM for every compact domain

Ω ⊂ M where e(φ) = 1
2
‖dφ‖2 is the energy density of φ.

It is well-known, cf. [5, 3, 4], that a map is harmonic if and only if its tension field is

zero.

The notions of horizontally conformal maps and harmonic morphisms were formally

introduced independently by B. Fuglede [6] and T. Ishihara [8]. In a sense, the former

can be thought of as a generalization of the concept of Riemannian submersions and

later can be thought of as a special class of harmonic maps. Here we present the basic

definitions, and refer to [1, 6, 10] for the fundamental results and properties.

For a smooth map φ : Mm → Nn, let Cφ = {x ∈ M | rankdφx < n} and let M∗

denote the set M \ Cφ. For each x ∈ M∗, the vertical and horizontal spaces are defined

by T V
x M = Kerdφ and TH

x M = (Kerdφ)⊥ respectively.

Definition 2.2. A smooth map φ : (Mm, 〈·, ·〉M)→(Nn, 〈·, ·〉N) is called horizontally

(weakly) conformal if dφ = 0 on Cφ and the restriction of φ to M \ Cφ is a conformal

submersion, that is, for each x ∈ M \ Cφ, dφx : TH
x M → Tφ(x)N is conformal and

surjective. This means that there exists a function λ : M \ Cφ → R+ such that

〈dφ(X), dφ(Y )〉N = λ2〈X,Y 〉M ∀X,Y ∈ THM.

By setting λ = 0 on Cφ, we can extend λ : M → R+
0 as a continuous function on M

such that λ2 is a smooth function on M , in fact λ2 = ‖dφ‖2
n

. The function λ : M → R+
0

is called the dilation of the map φ.

Harmonic morphisms are maps between Riemannian manifolds which preserve Laplace’s

equation in the following sense.

Definition 2.3. A smooth map φ : Mm→Nn is called a harmonic morphism if, for

every real-valued function f which is harmonic on an open subset V of N with φ−1(V )

non-empty, f ◦ φ is a real-valued harmonic function on φ−1(V ) ⊂ M .

These are related to harmonic maps and horizontally (weakly) conformal maps via

the following characterization, obtained in [6, 8].

A smooth map φ is a harmonic morphism if and only if it is harmonic and horizontally
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(weakly) conformal.

Due to the above characterization, harmonic morphisms may be viewed as a subclass

of harmonic maps. However, it is important to notice that in certain cases harmonic

morphisms have properties which are exactly dual to the properties of harmonic maps

(see explanation by J. C. Wood in [11]).

3. Formulation of the problem

Let m ≥ 1. Let φ : (Mm+2, 〈·, ·〉M)→(N2, h) be a non-constant submersive map. For

each x ∈ M , the first fundamental form φ∗h of φ can be thought, via the identification

maps ] and φ̃∗h, as a map Φ = ] ◦ φ̃∗h : TxM → TxM where φ̃∗h : TxM → T ∗
xM is

defined as
(
φ̃∗h(X)

)
(Y ) = φ∗h(X,Y ) and ] : T ∗

xM → TxM is defined as 〈α], Y 〉M =

α(Y ), α ∈ T ∗
xM. For each x ∈ M we call the eigenvalues of Φ the eigenvalues of φ∗h.

Since φ is submersive, φ∗h has two non-trivial positive eigenvalues at each point.

Lemma 3.1. Let m ≥ 1. Let φ : (Mm+2, 〈·, ·〉M)→(N2, h) be a non-constant submersive

map.

(1) If λk, k = 1, 2, is an eigenvalue of φ∗h and Xk is the corresponding eigenvector

then λk〈Xk, ·〉M = φ∗h(Xk, ·).
(2) Let TH

x M = (ker dφx)
⊥ denote the horizontal space at x ∈ M , with an orthonor-

mal basis (X1, X2) of eigenvectors of distinct (non-trivial) eigenvalues λ1, λ2 of

φ∗h then dφ ·X1, dφ ·X2 are orthogonal and ‖dφ ·X1‖2 = λ1, ‖dφ ·X2‖2 = λ2.

In the subsequent sections, we assume φ : (Mm+2〈·, ·〉M)→(N2〈·, ·〉N) to be a sub-

mersive harmonic map and denote by λ1, λ2 be the non-trivial eigenvalues of the first

fundamental form of φ, with the corresponding eigenvectors X1, X2. Let (X1, X2, Ui)
m
i=1

be an orthonormal basis of TxM = TH
x M ⊕ T V

x M such that (X1, X2) is an orthonormal

basis of TH
x M and (Ui)

m
i=1 is an orthonormal basis of T V

x M . We consider the function

(3.1) µ = λ1 − λ2

on Mm+2. Clearly µ ≡ 0 if and only if φ is a harmonic morphism.

The purpose of the calculations, to follow, is to obtain an integral formula and de-

termine conditions which force µ to be zero. Therefore, in the following calculations we

will assume that at all points of Mm+2, µ 6= 0 i.e. λ1 6= λ2.
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Section 4 is devoted to the computation of the Laplacian ∆µ. The integral formula

and its consequences are presented in Section 5.

4. Computation of the Laplacian ∆µ

The Laplacian of µ is given by:

Proposition 4.1 (Laplacian).

1

2
∆µ = (µKH + λ1K1 − λ2K2) +

1

2

m∑
i=1

{
(Ui(λ1))

2

λ1

− (Ui(λ2))
2

λ2

− dµ
(∇M

Ui
Ui

)
}

+ 2µ
{

(〈∇M
X1

X1, X2〉M)2 + (〈∇M
X2

X2, X1〉M)2
}

+ 2µ
m∑

i=1

(〈∇M
Ui
X1, X2〉M)2

+
m∑

i=1

{
X1(λ1) · 〈∇M

Ui
Ui, X1〉M −X2(λ2) · 〈∇M

Ui
Ui, X2〉M

}

+
m∑

i=1

{
µ〈∇M

X1
X1 +∇M

X2
X2,∇M

Ui
Ui〉M

}

+
m∑

i=1

m∑
j=1

{
λ1(〈∇M

Ui
Uj, X1〉M)2 − λ2(〈∇M

Ui
Uj, X2〉M)2

}

+
1

2

m∑
i=1

m∑

j=1,j 6=i

〈∇M
Ui
Ui, Uj〉M

{
−λ1

λ2

Uj(λ2) +
λ2

λ1

Uj(λ1)

}

where Kl, l = 1, 2 and KH are the curvatures defined by

Kl =
m∑

i=1

〈RM(Xl, Ui)Xl, Ui〉M and KH = 〈RM(X1, X2)X1, X2〉M .

Proof. We can write

−1

2
∆µ = −1

2

{
m∑

i=1

∇dµ(Ui, Ui) +
2∑

k=1

∇dµ(Xk, Xk)

}

= −1

2

{
∆vµ + ∆hµ

}
.

We call ∆vµ as the vertical Laplacian and ∆hµ as the horizontal Laplacian. Note that

these are both well-defined (i.e. independent of the bases Ui and Xk chosen). The

required result follows from the expressions of these Laplacians calculated in Section 4.1

and Section 4.2 respectively. ¤
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4.1. The vertical Laplacian. By its definition, the vertical Laplacian is given by

−∆vµ =
m∑

i=1

{
Ui(Ui(µ))− dµ

(∇M
Ui
Ui

)}
.

Prior to computing an expression for the vertical Laplacian we prove a few Lemmas

needed to simplify our computations and calculate Ui(Ui(µ)) in terms of sectional cur-

vatures.

Lemma 4.2. For each i = 1, . . . , m, k = 1, 2,

(1) dφ[Xk, Ui] = −∇φ−1TN
Ui

dφ·Xk.

(2) 〈∇φ−1TN
Ui

dφ·Xk, dφ·Xk〉N = Ui(λk)

2 .

(3)
m∑

i=1

〈∇M
X1

X1, X2〉M〈∇M
Ui
Ui, X2〉M =

m∑
i=1

〈∇M
X1

X1,∇M
Ui
Ui〉M

−
m∑

i=1

m∑

j=1,j 6=i

〈∇M
X1

X1, Uj〉M〈∇M
Ui
Ui, Uj〉M .

(4)
m∑

i=1

〈∇M
X2

X2, X1〉M〈∇M
Ui
Ui, X1〉M =

m∑
i=1

〈∇M
X2

X2,∇M
Ui
Ui〉M

−
m∑

i=1

m∑

j=1,j 6=i

〈∇M
X2

X2, Uj〉M〈∇M
Ui
Ui, Uj〉M .

(5) 〈∇M
Ui
Uj, Xk〉M = 〈∇M

Uj
Ui, Xk〉M .

Proof. (1) The proof follows from dφ[Xk, Ui] = ∇φ−1TN
Xk

dφ·Ui − ∇φ−1TN
Ui

dφ·Xk and the

fact that dφ·Ui = 0.

(2) Differentiating φ∗〈Xk, Xk〉N = λk gives 2〈∇φ−1TN
Ui

dφ·Xk, dφ·Xk〉N = Ui(λk).

(3) Writing ∇M
X1

X1 = 〈∇M
X1

X1, X2〉MX2 +
m∑

i=1

〈∇M
X1

X1, Ui〉MUi, we have

m∑
i=1

〈∇M
X1

X1,∇M
Ui
Ui〉M =

m∑
i=1

〈∇M
X1

X1, X2〉M〈∇M
Ui
Ui, X2〉M

+
m∑

i=1

m∑

j=1,j 6=i

〈∇M
X1

X1, Uj〉M〈∇M
Ui
Ui, Uj〉M

which completes the proof.
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(4) Similar to Part (3).

(5) The proof follows from the following relation and the fact that [Ui, Uj] is vertical.

〈∇M
Ui
Uj, Xk〉M = 〈∇M

Uj
Ui, Xk〉M + 〈[Ui, Uj], Xk〉M .

¤

Lemma 4.3. For each i = 1, . . . , m,

(1) 〈[X1, Ui], X1〉M = −Ui(λ1)

2λ1
.

(2) 〈[X2, Ui], X2〉M = −Ui(λ2)

2λ2
.

(3) 〈[X1, Ui], X2〉M = − 1
λ2

〈∇φ−1TN
Ui

dφ·X1, dφ·X2〉N .

(4) 〈[X2, Ui], X1〉M = 1
λ1

〈∇φ−1TN
Ui

dφ·X1, dφ·X2〉N .

Proof. For each i = 1, . . . , m,

(1)

〈[X1, Ui], X1〉M =
1

λ1

φ∗〈[X1, Ui], X1〉N

= − 1

λ1

〈∇φ−1TN
Ui

dφ·X1, dφ ·X1〉N By Lemma 4.2 (1)

= −Ui(λ1)

2λ1

By Lemma 4.2 (2).

Parts (2), (3), (4) are similar to Part (1). ¤

Lemma 4.4. For each i = 1, . . . , m,

(1) 〈∇M
X1

X1, Ui〉M = Ui(λ1)

2λ1
.

(2) 〈∇M
X2

X2, Ui〉M = Ui(λ2)

2λ2
.

(3) 〈∇M
X2

X1, Ui〉M = − 1
λ1

〈∇φ−1TN
Ui

dφ·X1, dφ·X2〉N + 〈∇M
Ui
X1, X2〉M .

(4) 〈∇M
X1

X2, Ui〉M = 1
λ2

〈∇φ−1TN
Ui

dφ·X1, dφ·X2〉N − 〈∇M
Ui
X1, X2〉M .

Proof. For each i = 1, . . . , m,

(1)

〈∇M
X1

X1, Ui〉M = −〈∇M
X1

Ui, X1〉M

= −
{

〈∇M
Ui
X1, X1〉M + 〈[X1, Ui], X1〉M

}

=
Ui(λ1)

2λ1

By Lemma 4.3 (1).
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(2) Similar to Part (1).

(3)

〈∇M
X2

X1, Ui〉M = −〈∇M
X2

Ui, X1〉M

= −
{

〈∇M
Ui
X2, X1〉M + 〈[X2, Ui], X1〉M

}

= 〈∇M
Ui
X1, X2〉M − 1

λ1

〈∇φ−1TN
Ui

dφ·X1, dφ·X2〉N

︸ ︷︷ ︸
By Lemma 4.3 (4).

(4) Similar to Part (3).

¤

Lemma 4.5. For each i = 1, . . . , m,

(1)

〈∇M
[X1,Ui]

Ui, X1〉M =
(Ui(λ1))

2

4λ1
2 +

1

λ2

〈∇φ−1TN
Ui

dφ·X1, dφ·X2〉N〈∇M
Ui
X1, X2〉M

− 1

λ1λ2

{
〈∇φ−1TN

Ui
dφ·X1, dφ·X2〉N

}2

+
m∑

j=1

(〈∇M
Ui
Uj, X1〉M)2

+
m∑

j=1,j 6=i

AijBij

where AijBij = 〈∇M
X1

Ui, Uj〉M〈∇M
Ui
Uj, X1〉M .

(2)

〈∇M
[X2,Ui]

Ui, X2〉M =
(Ui(λ2))

2

4λ2
2 +

1

λ1

〈∇φ−1TN
Ui

dφ·X1, dφ·X2〉N〈∇M
Ui
X1, X2〉M

− 1

λ1λ2

{
〈∇φ−1TN

Ui
dφ·X1, dφ·X2〉N

}2

+
m∑

j=1

(〈∇M
Ui
Uj, X2〉M)2

+
m∑

j=1,j 6=i

A′
ijB

′
ij

where A′
ijB

′
ij = 〈∇M

X2
Ui, Uj〉M〈∇M

Ui
Uj, X2〉M .

Proof. Let i = 1, . . . , m.



8 M. T. MUSTAFA

(1) Writing [X1, Ui] in terms of basis (X1, X2, Ui)
m
i=1, we have

〈∇M
[X1,Ui]

Ui, X1〉M = 〈[X1, Ui], X1〉M〈∇M
X1

Ui, X1〉M + 〈[X1, Ui], X2〉M〈∇M
X2

Ui, X1〉M

+
m∑

j=1

〈[X1, Ui], Uj〉M〈∇M
Uj

Ui, X1〉M

= −〈[X1, Ui], X1〉M〈∇M
X1

X1, Ui〉M − 〈[X1, Ui], X2〉M〈∇M
X2

X1, Ui〉M

+
m∑

j=1

〈[X1, Ui], Uj〉M〈∇M
Uj

Ui, X1〉M .(4.1)

Using 〈[X1, Ui], Ui〉M = 〈∇M
X1

Ui, Ui〉M − 〈∇M
Ui
X1, Ui〉M = 〈∇M

Ui
Ui, X1〉M ,

〈[X1, Ui], Uj〉M = 〈∇M
X1

Ui, Uj〉M +〈∇M
Ui
Uj, X1〉M and Lemma 4.2 (5), the last term

in Equation 4.1 can be simplified as follows.
m∑

j=1

〈[X1, Ui], Uj〉M〈∇M
Uj

Ui, X1〉M =
m∑

i=1

〈[X1, Ui], Ui〉M〈∇M
Ui
Ui, X1〉M

+
m∑

j=1,j 6=i

〈[X1, Ui], Uj〉M〈∇M
Uj

Ui, X1〉M

=
m∑

i=1

(〈∇M
Ui
Ui, X1〉M)2 +

m∑

j=1,j 6=i

(〈∇M
Ui
Uj, X1〉M)2

+
m∑

j=1,j 6=i

〈∇M
X1

Ui, Uj〉M〈∇M
Ui
Uj, X1〉M .(4.2)

The proof is completed by substituting Equation 4.2 in Equation 4.1 and using

Lemma 4.3 (1),(2) and Lemma 4.4 (1),(2) to determine the first two terms of

Equation 4.1.

(2) Similar to Part (2).

¤

Lemma 4.6. For each i = 1, . . . , m,

(1)

〈∇M
Ui
∇M

X1
Ui, X1〉M = −Ui

(
Ui(λ1)

2λ1

)
+

1

λ2

〈∇φ−1TN
Ui

dφ·X1, dφ·X2〉N〈∇M
Ui
X1, X2〉M

− (〈∇M
Ui
X1, X2〉M)2 +

m∑

j=1,j 6=i

AijBij
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where AijBij = 〈∇M
X1

Ui, Uj〉M〈∇M
Ui
Uj, X1〉M .

(2)

〈∇M
Ui
∇M

X2
Ui, X2〉M = −Ui

(
Ui(λ2)

2λ2

)
+

1

λ1

〈∇φ−1TN
Ui

dφ·X1, dφ·X2〉N〈∇M
Ui
X1, X2〉M

− (〈∇M
Ui
X1, X2〉M)2 +

m∑

j=1,j 6=i

A′
ijB

′
ij

where A′
ijB

′
ij = 〈∇M

X2
Ui, Uj〉M〈∇M

Ui
Uj, X2〉M .

Proof. (1)

〈∇M
Ui
∇M

X1
Ui, X1〉M = Ui(〈∇M

X1
Ui, X1〉M)− 〈∇M

X1
Ui,∇M

Ui
X1〉M

= −Ui(〈∇M
X1

X1, Ui〉M)− 〈∇M
X1

Ui,∇M
Ui
X1〉M .

Now ∇M
X1

Ui = 〈∇M
X1

Ui, X1〉MX1+〈∇M
X1

Ui, X2〉MX2+
m∑

j=1,j 6=i

〈∇M
X1

Ui, Uj〉MUj. There-

fore,

〈∇M
Ui
∇M

X1
Ui, X1〉M = −Ui(〈∇M

X1
X1, Ui〉M)− 〈∇M

X1
Ui, X2〉M〈∇M

Ui
X1, X2〉M

−
m∑

j=1,j 6=i

〈∇M
X1

Ui, Uj〉M〈∇M
Ui
X1, Uj〉M

= −Ui(〈∇M
X1

X1, Ui〉M) + 〈∇M
X1

X2, Ui〉M〈∇M
Ui
X1, X2〉M

+
m∑

j=1,j 6=i

〈∇M
X1

Ui, Uj〉M〈∇M
Ui
Uj, X1〉M .

Using Lemma 4.4 (1),(4) for the first two terms in the above expression gives the

required result.

(2) Similar to Part (1).

¤

Let Kl denote the Ricci curvature given by Kl =
m∑

i=1

〈RM(Xl, Ui)Xl, Ui〉M .

Lemma 4.7. The Ricci curvatures Kl, l = 1, 2 are given by
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(1)

λ1K1 = −
m∑

i=1

[
−1

2
Ui (Ui(λ1)) +

3

4

(Ui(λ1))
2

λ1

− 1

λ2

{
〈∇φ−1TN

Ui
dφ·X1, dφ·X2〉N

}2
]

− 2
m∑

i=1

λ1

λ2

〈∇φ−1TN
Ui

dφ·X1, dφ·X2〉N〈∇M
Ui
X1, X2〉M

−
m∑

i=1

[
−λ1(〈∇M

Ui
X1, X2〉M)2 + λ1

m∑
j=1

(〈∇M
Ui
Uj, X1〉M)2

]
+ λ1

m∑
i=1

〈∇M
X1
∇M

Ui
Ui, X1〉M .

(2)

λ2K2 = −
m∑

i=1

[
−1

2
Ui (Ui(λ2)) +

3

4

(Ui(λ2))
2

λ2

− 1

λ1

{
〈∇φ−1TN

Ui
dφ·X1, dφ·X2〉N

}2
]

− 2
m∑

i=1

λ2

λ1

〈∇φ−1TN
Ui

dφ·X1, dφ·X2〉N〈∇M
Ui
X1, X2〉M

−
m∑

i=1

[
−λ2(〈∇M

Ui
X1, X2〉M)2 + λ2

m∑
j=1

(〈∇M
Ui
Uj, X1〉M)2

]
+ λ2

m∑
i=1

〈∇M
X2
∇M

Ui
Ui, X2〉M .

Proof. (1) By definition

K1 =
m∑

i=1

〈RM(X1, Ui)X1, Ui〉M = −
m∑

i=1

〈RM(X1, Ui)Ui, X1〉M

= −
m∑

i=1

{
〈∇M

Ui
∇M

X1
Ui, X1〉M + 〈∇M

[X1,Ui]
Ui, X1〉M

}
+

m∑
i=1

〈∇M
X1
∇M

Ui
Ui, X1〉M .(4.3)

We calculate the underlined term in the above expression using Lemma 4.6 (1).

m∑
i=1

〈∇M
Ui
∇M

X1
Ui, X1〉M =

m∑
i=1

{
−Ui

(
Ui(λ1)

2λ1

)
− (〈∇M

Ui
X1, X2〉M)2

}

+
m∑

i=1

1

λ2

〈∇φ−1TN
Ui

dφ·X1, dφ·X2〉N〈∇M
Ui
X1, X2〉M +

m∑
i,j=1

AijBij

where Aij = 〈∇M
X1

Ui, Uj〉M and Bij = 〈∇M
Ui
Uj, X1〉M .

Since Aij is antisymmetric in i, j and Bij is symmetric in i, j, we note that

m∑
i,j=1

AijBij = 0.(4.4)
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Moreover, −Ui

(
Ui(λ1)
2λ1

)
= −1

2

{
1
λ1

Ui (Ui(λ1))− (Ui(λ1))2

λ1
2

}
. Using this and Equa-

tion 4.4 we obtain

m∑
i=1

〈∇M
Ui
∇M

X1
Ui, X1〉M =

m∑
i=1

{
− 1

2λ1

Ui (Ui(λ1)) +
(Ui(λ1))

2

2λ1
2 − (〈∇M

Ui
X1, X2〉M)2

}

+
m∑

i=1

1

λ2

〈∇φ−1TN
Ui

dφ·X1, dφ·X2〉N〈∇M
Ui
X1, X2〉M .(4.5)

Substituting the Equation 4.5 and expression for 〈∇M
[X1,Ui]

Ui, X1〉M from Lemma 4.5 (1)

into Equation 4.3 and using
m∑

i,j=1

AijBij = 0 gives the required expression for K1.

(2) Similar to Part (1).

¤

The expression for the vertical Laplacian is given by the following.

Proposition 4.8 (Vertical Laplacian).

−1

2
∆vµ =

m∑
i=1

[
λ1K1 − λ2K2 +

3

4

{
(Ui(λ1))

2

λ1

− (Ui(λ2))
2

λ2

}]

+ 2
m∑

i=1

(
λ1

λ2

− λ2

λ1

)
〈∇φ−1TN

Ui
dφ·X1, dφ·X2〉N〈∇M

Ui
X1, X2〉M

−
m∑

i=1

(
1

λ2

− 1

λ1

) {
〈∇φ−1TN

Ui
dφ·X1, dφ·X2〉N

}2

+
m∑

i=1

{
−µ(〈∇M

Ui
X1, X2〉M)2 +

m∑
j=1

(
λ1(〈∇M

Ui
Uj, X1〉M)2 − λ2(〈∇M

Ui
Uj, X2〉M)2

)}

+
m∑

i=1

{
−λ1〈∇M

X1
∇M

Ui
Ui, X1〉M + λ2〈∇M

X2
∇M

Ui
Ui, X2〉M

}
−

m∑
i=1

1

2
dµ

(∇M
Ui
Ui

)
.(4.6)

Proof.

−1

2
∆vµ =

1

2

m∑
i=1

∇dµ(Ui, Ui)

=
1

2

m∑
i=1

Ui (Ui(µ))−
m∑

i=1

1

2
dµ

(∇M
Ui
Ui

)
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=
1

2

m∑
i=1

{Ui (Ui(λ1))− Ui (Ui(λ2))} −
m∑

i=1

1

2
dµ

(∇M
Ui
Ui

)
.(4.7)

The proof is completed by substituting the expressions from Lemma 4.7 (1), (2) for

1
2

m∑
i=1

Ui (Ui(λ1)) and 1
2

m∑
i=1

Ui (Ui(λ2)) into Equation 4.7.

¤

4.2. The horizontal Laplacian. The horizontal Laplacian is given by

−∆hµ =
2∑

k=1

{∇Xk
dµ(Xk)− dµ

(∇M
Xk

Xk

)}
.

So, firstly, we calculate ∇Xk
dµ(Xk) and dµ

(∇M
Xk

Xk

)
in Lemma 4.11 and Lemma 4.10

respectively, with the help of following Lemma.

Lemma 4.9.

(1) dµ(X1) = 2µ〈∇M
X2

X2, X1〉M + 2λ1

m∑
i=1

〈∇M
Ui
Ui, X1〉M .

(2) dµ(X2) = 2µ〈∇M
X1

X1, X2〉M − 2λ2

m∑
i=1

〈∇M
Ui
Ui, X2〉M .

Proof. (1) Let S be the stress energy tensor of the map φ. Recall from [4] that the

stress energy tensor of a smooth map φ : (M, 〈·, ·〉M) → (N, 〈·, ·〉N) is given by

S = 1
2
‖dφ‖2 · 〈·, ·〉M − φ∗〈·, ·〉N . Moreover, if φ is harmonic , then divS = 0.

Therefore,

(divS)(X1) = 0 =
2∑

k=1

(∇Xk
S) (Xk, X1) +

m∑
i=1

(∇Ui
S) (Ui, X1).(4.8)

Now

(∇X1S) (X1, X1) =
1

2
X1

(‖dφ‖2
) · 〈X1, X1〉M

−
{

X1

(
φ∗〈X1, X1〉N

)
− 2φ∗〈∇M

X1
X1, X1〉N

}

=
1

2
X1 (λ1 + λ2)−

{
X1

(
λ1〈X1, X1〉M

)
− 2λ1〈∇M

X1
X1, X1〉M

}

= −1

2
X1(µ) = −1

2
dµ(X1),(4.9)
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(∇X2S) (X2, X1) =
1

2
X2

(‖dφ‖2
) · 〈X2, X1〉M

−
{

X2

(
φ∗〈X2, X1〉N

)
− φ∗〈∇M

X2
X2, X1〉N − φ∗〈∇M

X2
X1, X2〉N

}

= −
{

X2

(
λ1〈X2, X1〉M

)
− λ1〈∇M

X2
X2, X1〉M − λ2〈∇M

X2
X1, X2〉M

}

= µ〈∇M
X2

X2, X1〉M .(4.10)

Similarly

(4.11) (∇Ui
S) (Ui, X1) = λ1〈∇M

Ui
Ui, X1〉M .

Equation 4.8 combined with Equations 4.9, 4.10 and 4.11 completes the proof.

(2) Considering (divS)(X2) = 0 and proceeding as in Part (1) gives the proof.

¤

Lemma 4.10.

(1)

dµ
(∇M

X1
X1

)
= 2µ(〈∇M

X1
X1, X2〉M)2 − 2λ2

m∑
i=1

〈∇M
X1

X1,∇M
Ui
Ui〉M

+ 2λ2

m∑
i=1

m∑

j=1,j 6=i

〈∇M
X1

X1, Uj〉M〈∇M
Ui
Ui, Uj〉M

+
m∑

i=1

Ui(λ1)

2λ1

Ui(µ).

(2)

dµ
(∇M

X2
X2

)
= 2µ(〈∇M

X2
X2, X1〉M)2 + 2λ1

m∑
i=1

〈∇M
X2

X2,∇M
Ui
Ui〉M

− 2λ1

m∑
i=1

m∑

j=1,j 6=i

〈∇M
X2

X2, Uj〉M〈∇M
Ui
Ui, Uj〉M

+
m∑

i=1

Ui(λ2)

2λ2

Ui(µ).

Proof. (1) Writing ∇M
X1

X1 = 〈∇M
X1

X1, X2〉MX2 +
m∑

i=1

〈∇M
X1

X1, Ui〉MUi we have

dµ
(∇M

X1
X1

)
= 〈∇M

X1
X1, X2〉Mdµ(X2) +

m∑
i=1

〈∇M
X1

X1, Ui〉Mdµ(Ui).
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Using Lemma 4.9 (2) and Lemma 4.4 (1) we obtain

dµ
(∇M

X1
X1

)
= 2µ(〈∇M

X1
X1, X2〉M)2 − 2λ2

m∑
i=1

〈∇M
X1

X1, X2〉M〈∇M
Ui
Ui, X2〉M

+
m∑

i=1

Ui(λ1)

2λ1

Ui(µ).

The proof finishes after simplifying further, using Lemma 4.2 (3).

(2) Similar to Part (1).

¤

Lemma 4.11.

(1)

∇X1dµ(X1) = 4µ(〈∇M
X2

X2, X1〉M)2 + 4λ1

m∑
i=1

〈∇M
X2

X2,∇M
Ui
Ui〉M

− 4λ1

m∑
i=1

m∑

j=1,j 6=i

〈∇M
X2

X2, Uj〉M〈∇M
Ui
Ui, Uj〉M

+ 2µ
{

〈∇M
X1
∇M

X2
X2, X1〉M + 〈∇M

X1
X1,∇M

X2
X2〉M

}

+ 2
m∑

i=1

X1

(
λ1〈∇M

Ui
Ui, X1〉M

)
.

(2)

∇X2dµ(X2) = 4µ(〈∇M
X1

X1, X2〉M)2 − 4λ2

m∑
i=1

〈∇M
X1

X1,∇M
Ui
Ui〉M

+ 4λ2

m∑
i=1

m∑

j=1,j 6=i

〈∇M
X1

X1, Uj〉M〈∇M
Ui
Ui, Uj〉M

+ 2µ
{

〈∇M
X2
∇M

X1
X1, X2〉M + 〈∇M

X1
X1,∇M

X2
X2〉M

}

− 2
m∑

i=1

X2

(
λ2〈∇M

Ui
Ui, X2〉M

)
.
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Proof. (1) Using Lemma 4.9 (1) we can write

∇X1dµ(X1) = 2X1(µ) · 〈∇M
X2

X2, X1〉M + 2µ ·X1

(
〈∇M

X2
X2, X1〉M

)

+ 2
m∑

i=1

X1

(
λ1〈∇M

Ui
Ui, X1〉M

)

= 2dµ(X1) · 〈∇M
X2

X2, X1〉M

+ 2µ
{

〈∇M
X1
∇M

X2
X2, X1〉M + 〈∇M

X1
X1,∇M

X2
X2〉M

}

+ 2
m∑

i=1

X1

(
λ1〈∇M

Ui
Ui, X1〉M

)
.

Substituting the value of dµ(X1) from Lemma 4.9 (1) and using Lemma 4.2 (4)

gives the required relation.

(2) Similar to Part (1).

¤

The first version of the formula for the horizontal Laplacian is

Proposition 4.12.

−∆hµ = −1

2

m∑
i=1

Ui(µ)

(
Ui(λ1)

λ1

+
Ui(λ2)

λ2

)
+ 2µ

{
(〈∇M

X1
X1, X2〉M)2 + (〈∇M

X2
X2, X1〉M)2

}

+ 2µ
{

〈∇M
X1
∇M

X2
X2, X1〉M + 2〈∇M

X1
X1,∇M

X2
X2〉M + 〈∇M

X2
∇M

X1
X1, X2〉M

}

+
m∑

i=1

{
2λ1〈∇M

X2
X2,∇M

Ui
Ui〉M − 2λ2〈∇M

X1
X1,∇M

Ui
Ui〉M

}

+
m∑

i=1

m∑

j=1,j 6=i

〈∇M
Ui
Ui, Uj〉M

{
−2λ1〈∇M

X2
X2, Uj〉M + 2λ2〈∇M

X1
X1, Uj〉M

}

+ 2
m∑

i=1

{
X1

(
λ1〈∇M

Ui
Ui, X1〉M

)
− 2X2

(
λ2〈∇M

Ui
Ui, X2〉M

)}
.

Proof. According to definition the horizontal Laplacian ∆hµ is

−∆hµ =
2∑

k=1

∇dµ(Xk, Xk) =
2∑

k=1

{∇Xk
dµ(Xk)− dµ

(∇M
Xk

Xk

)}
.

Calculating
2∑

k=1

dµ
(∇M

Xk
Xk

)
from Lemma 4.10 and

2∑

k=1

∇Xk
dµ(Xk) from Lemma 4.11 gives

the expression for the horizontal Laplacian. ¤
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Before giving the final expression for the horizontal Laplacian we simplify, in Lemma 4.13

and Lemma 4.14, some of the terms present in Proposition 4.12.

Lemma 4.13.

(1)

〈∇M
X1
∇M

X2
X2, X1〉M + 2〈∇M

X1
X1,∇M

X2
X2〉M + 〈∇M

X2
∇M

X1
X1, X2〉M

=

〈RM(X1, X2)X1, X2〉M + 〈∇M
[X1,X2]X2, X1〉M +

m∑
i=1

Ui(λ1) · Ui(λ2)

4λ1λ2

+
m∑

i=1

[{〈∇M
Ui
X1, X2〉M − 1

λ1

〈∇φ−1TN
Ui

dφ·X1, dφ·X2〉N}

×{〈∇M
Ui
X1, X2〉M − 1

λ2

〈∇φ−1TN
Ui

dφ·X1, dφ·X2〉N}].

(2)

m∑
i=1

m∑

j=1,j 6=i

〈∇M
Ui
Ui, Uj〉M

{
−2λ1〈∇M

X2
X2, Uj〉M + 2λ2〈∇M

X1
X1, Uj〉M

}

=
m∑

i=1

m∑

j=1,j 6=i

〈∇M
Ui
Ui, Uj〉M

{
−λ1

λ2

Uj(λ2) +
λ2

λ1

Uj(λ1)

}
.

Proof. (1) By definition ∇M
X1
∇M

X2
X2 = −RM(X1, X2)X2 + ∇M

X2
∇M

X1
X2 + ∇M

[X1,X2]X2.

Therefore, we can write as

〈∇M
X1
∇M

X2
X2, X1〉M + 2〈∇M

X1
X1,∇M

X2
X2〉M + 〈∇M

X2
∇M

X1
X1, X2〉M

=

〈RM(X1, X2)X1, X2〉M + 〈∇M
[X1,X2]X2, X1〉M + 〈∇M

X1
X1,∇M

X2
X2〉M

+
{

〈∇M
X2
∇M

X1
X2, X1〉M + 〈∇M

X1
X1,∇M

X2
X2〉M + 〈∇M

X2
∇M

X1
X1, X2〉M

}

(4.12)
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where the terms in the braces can be simplified as follows.

〈∇M
X2
∇M

X1
X2, X1〉M + 〈∇M

X1
X1,∇M

X2
X2〉M + 〈∇M

X2
∇M

X1
X1, X2〉M

=

〈∇M
X2
∇M

X1
X2, X1〉M + X2

(
〈∇M

X1
X1, X2〉M

)

〈∇M
X2
∇M

X1
X2, X1〉M −X2

(
〈∇M

X1
X2, X1〉M

)

〈∇M
X2
∇M

X1
X2, X1〉M − 〈∇M

X2
∇M

X1
X2, X1〉M − 〈∇M

X1
X2,∇M

X2
X1〉M

= −
m∑

i=1

〈∇M
X2

X1, Ui〉M〈∇M
X1

X2, Ui〉M(4.13)

where we have used ∇M
X2

X1 = 〈∇M
X2

X1, X2〉MX2 +
m∑

i=1

〈∇M
X2

X1, Ui〉MUi.

Moreover,

〈∇M
X1

X1,∇M
X2

X2〉M =
m∑

i=1

〈∇M
X1

X1, Ui〉M〈∇M
X2

X2, Ui〉M

=
m∑

i=1

Ui(λ1) · Ui(λ2)

4λ1λ2

.(4.14)

The proof is completed by substituting Equation 4.13, Equation 4.14 in Equa-

tion 4.12 and using Lemma 4.4 (3),(4).

(2) Follows directly from Lemma 4.4 (1),(2).

¤

Lemma 4.14.

〈∇M
[X1,X2]X2, X1〉M = (〈∇M

X1
X1, X2〉M)2 + (〈∇M

X2
X2, X1〉M)2

−
m∑

i=1

(
λ1 + λ2

λ1λ2

)
〈∇φ−1TN

Ui
dφ·X1, dφ·X2〉N〈∇M

Ui
X1, X2〉M

+ 2
m∑

i=1

〈∇M
Ui
X1, X2〉M〈∇M

Ui
X1, X2〉M .
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Proof. Writing [X1, X2] =
2∑

k=1

〈[X1, X2], Xk〉MXk +
m∑

i=1

〈[X1, X2], Ui〉MUi we obtain

〈∇M
[X1,X2]X2, X1〉M = 〈[X1, X2], X1〉M〈∇M

X1
X2, X1〉M + 〈[X1, X2], X2〉M〈∇M

X2
X2, X1〉M

−
m∑

i=1

〈[X1, X2], Ui〉M〈∇M
Ui
X1, X2〉M

=
{

〈∇M
X1

X2, X1〉M − 0
}

〈∇M
X1

X2, X1〉M

+
{

0− 〈∇M
X2

X1, X2〉M
}

〈∇M
X2

X2, X1〉M

−
m∑

i=1

{
〈∇M

X1
X2, Ui〉M − 〈∇M

X2
X1, Ui〉M

}
〈∇M

Ui
X1, X2〉M .

The desired relation is obtained by using Lemma 4.4 (3),(4). ¤

Collecting the above results we have:

Proposition 4.15 (Horizontal Laplacian). Writing KH for 〈RM(X1, X2)X1, X2〉M we

have

−∆hµ = 2µKH − 1

2

m∑
i=1

{
Ui(µ)

(
Ui(λ1)

λ1

+
Ui(λ2)

λ2

)
+ µ

Ui(λ1) · Ui(λ2)

λ1λ2

}

+ 4µ
{

(〈∇M
X1

X1, X2〉M)2 + (〈∇M
X2

X2, X1〉M)2
}

+
m∑

i=1

{
6µ(〈∇M

Ui
X1, X2〉M)2 +

2µ

λ1λ2

{
〈∇φ−1TN

Ui
dφ·X1, dφ·X2〉N

}2
}

− 4µ
m∑

i=1

(
1

λ1

+
1

λ2

)
〈∇φ−1TN

Ui
dφ·X1, dφ·X2〉N〈∇M

Ui
X1, X2〉M

+
m∑

i=1

{
2λ1〈∇M

X2
X2,∇M

Ui
Ui〉M − 2λ2〈∇M

X1
X1,∇M

Ui
Ui〉M

}

+
m∑

i=1

m∑

j=1,j 6=i

〈∇M
Ui
Ui, Uj〉M

(
−λ1

λ2

Uj(λ2) +
λ2

λ1

Uj(λ1)

)

+
m∑

i=1

{
2X1

(
λ1〈∇M

Ui
Ui, X1〉M

)
− 2X2

(
λ2〈∇M

Ui
Ui, X2〉M

)}
.(4.15)

Proof. The proof follows from Proposition 4.12, Lemma 4.13 and Lemma 4.14. ¤
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5. Necessary conditions; Sufficiency and restrictions

In this section we present the required integral formula for ∆µ2 for a harmonic map

φ : (Mm+2, 〈·, ·〉M)→(N2, h) (m ≥ 1), which leads to the conditions making φ horizon-

tally conformal. (See corollary 5.2). In Corollary 5.3, Corollary 5.4 we give restrictions

on these conditions and finally Proposition 5.5 discusses the case when these necessary

conditions are sufficient.

Theorem 5.1. Let m ≥ 1. Let φ : (Mm+2, 〈·, ·〉M)→(N2, 〈·, ·〉N) be a harmonic map

which has rank 2 almost everywhere and µ be the function given by the difference of the

non-trivial eigenvalues of the first fundamental form of φ, (as explained in Section 3).

Then at each point x ∈ M ,

−∆µ2 = 4µ
{
λ1RicciM(X1, X1)− λ2RicciM(X2, X2)

}
+ 2‖dµ‖2

+ 8µ2‖H(∇M
X1

X1 +∇M
X2

X2)‖2 + 4µ {a1X1(λ1)− a2X2(λ2)}

+
m∑

i=1

[
8µ2(〈∇M

Ui
X1, X2〉M)2 + 2µ

{
(Ui(λ1))

2

λ1

− (Ui(λ2))
2

λ2

}]

+
m∑

i=1

m∑

j=1,j 6=i

{
λ1(〈∇M

Ui
Uj, X1〉M)2 − λ2(〈∇M

Ui
Uj, X2〉M)2

}

where ak =
m∑

i=1

〈∇M
Ui
Ui, Xk〉M , for k = 1, 2 and H denotes the orthogonal projection on

the horizontal space defined in Section 2.

Proof. Follows from Proposition 4.1 and the fact that the following computational rela-

tions hold.

(1)

m∑
i=1

dµ
(∇M

Ui
Ui

)
= 2

{
λ1a

2
1 + µa1 · 〈∇M

X2
X2, X1〉M − λ2a

2
2 + µa2 · 〈∇M

X1
X1, X2〉M

}

+
m∑

i=1

m∑

j=1,j 6=i

〈∇M
Ui
Ui, Uj〉M · Uj(µ).

(2) ‖H(∇M
X1

X1 +∇M
X2

X2)‖2 = (〈∇M
X2

X2, X1〉M)2 + (〈∇M
X1

X1, X2〉M)2.
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(3)

m∑
i=1

〈∇M
X1

X1 +∇M
X2

X2,∇M
Ui
Ui〉M = a1〈∇M

X2
X2, X1〉M + a2〈∇M

X1
X1, X2〉M

+
m∑

i=1

m∑

j=1,j 6=i

〈∇M
Ui
Ui, Uj〉M

{
Uj(λ1)

2λ1

+
Uj(λ2)

2λ2

}

where ak =
m∑

i=1

〈∇M
Ui
Ui, Xk〉M for k = 1, 2. ¤

The following application of Theorem 5.1 provides the desired conditions.

Corollary 5.2. Let (Mm+2, 〈·, ·〉M) be a closed Riemannian manifold. Let φ : Mm+2→N2

be a harmonic map of rank 2 almost everywhere. Then φ is a harmonic morphism if the

following conditions are satisfied:

(1) RicciM(X1, X1) = RicciM(X2, X2) > 0,

(2) φ has totally geodesic fibres,

(3) grade(φ) is horizontal.

Proof. Let x be a maximum point of µ2 in the interior of M . Let (Ui)
m
i=1 be a basis of

T V
x M the vertical space at x. Then by Condition (3)

(5.1) Ui(λ1)(x) = −Ui(λ2)(x).

On the other hand the maximality of µ2 at x implies that Ui(µ
2)(x) = 0, i.e. either

µ(x) = 0 or Ui(µ)(x) = 0. If Ui(µ)(x) = 0 then from Equation 5.1 we have

Ui(λ1)(x) = 0 = Ui(λ2)(x).

Moreover, the condition that φ has totally geodesic fibres implies that ∇M
Ui
Uj is vertical

for all i, j ∈ {1, . . . , m} hence ak = 0 for k = 1, 2. Now combining the hypothesis with

Theorem 5.1 we have −∆µ2 > 0 at x, which is a contradiction to the maximality of µ2

at x. Therefore µ(x) = 0 and hence we must have µ2 ≡ 0. ¤

The restrictions on the conditions, determined above, are obtained by the applica-

tion of the Weitzenböck formula for harmonic morphisms proved by the author in [9,

Proposition 2.1].
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Corollary 5.3. There exists no non-constant harmonic map φ : Mm+2→N2, of rank 2

almost everywhere, from a closed Riemannian manifold such that N2 is a compact Rie-

mann surface of genus g ≥ 1 and the following conditions are satisfied:

(1) Ricci(X1, X1) = Ricci(X2, X2) > 0

(2) φ has totally geodesic fibres

(3) grade(φ) is horizontal.

Proof. If the given conditions are satisfied then φ is a harmonic morphism from Corol-

lary 5.2.

Now N2 has genus g ≥ 1, therefore it carries a hermitian metric of constant negative

curvature or zero curvature. The proof then follows from [9, Theorem 2.5]. ¤

As an application we have

Corollary 5.4. Let Mm+2 be a compact Einstein manifold of positive scalar curvature

and N2 be a Riemann surface of genus ≥ 1. Then there exists no harmonic map

φ : Mm+2→N2, of rank 2 almost everywhere, such that grade(φ) is horizontal and φ has

totally geodesic fibres.

In contrast to Corollary 5.3, when N2 is a compact Riemann surface of genus g = 0

the necessary determined conditions turn out to be sufficient as well.

Proposition 5.5. Let N2 be a compact Riemann surface of genus g = 0 and Mm+2

be a closed Riemannian manifold. Let φ : Mm+2→N2 be a non-constant submersive

harmonic morphism with RicciM(Xi, Xi) ≥ K > 0, i = 1, 2, and dilation λ2(x) ≤ 2K
KN

where KN > 0 denotes the curvature of N2 and (X1, X2) is an orthonormal basis of

TH
x M . Then φ satisfies

(1) RicciM(X1, X1) = RicciM(X2, X2) = K > 0,

(2) φ has totally geodesic fibres,

(3) grade(φ) = 0.

Proof. Recall that the Weitzenböck formula for a harmonic morphism φ, subjected to

the hypothesis, can be written as, cf. [9, Proposition 2.1]

∆λ2≤− ‖∇dφ‖2 + KNλ4 − 2Kλ2
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which on integration implies that φ is totally geodesic, and as φ is non-constant we

further have

RicciM(X1, X1) = RicciM(X2, X2) = K.

Moreover φ, being totally geodesic, essentially has totally geodesic fibres and constant

dilation i.e satisfies grade(φ) = 0. ¤
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