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Abstract

The main aim of wavelet-based numerical methods for solving partial differential equations is to develop adaptive
schemes, in order to achieve accuracy and computational efficiency. The wavelet optimized finite difference method
(WOFD) uses wavelets to generate appropriate grids to apply finite difference method. Its standard implementation carries
out static-re-griddings after a fixed number of time steps. We present an effective implementation of WOFD method that
reduces the number of static-re-griddings hence leading to reduction of FLOPS, without significant loss of accuracy.
Numerical experiments are performed on different cases of heat and Schrödinger equations.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction and description of the method

The mathematical modeling of most of the physical processes leads to partial differential equations of the
form, for which the methods of finding analytic solutions are either not known or hard to develop. Therefore,
one looks for their numerical solutions. Many of these partial differential equations exhibit localized high fre-
quency behavior. If the conventional finite difference approach is employed for numerical solution of such
problems, then one requires a very fine grid to incorporate the steep gradients. The disadvantage is that a very
large number of grid points are required, which heavily increases the computational cost. Furthermore, most
of these grid points are located in regions where the solution is quite smooth and such a fine gridding is not
required there, for the desired accuracy. Therefore, it is appropriate to employ adaptive methods; for instance,
adaptive finite difference, adaptive finite element or using wavelets.

Wavelets provide a natural tool to deal with such problems. Several wavelet-based methods are available in
literature to solve partial differential equations. These include filter bank approach [9], interpolating wavelet
methods [4,5], Galerkin type methods [1,2], collocation method [3] and WOFD method [6–8].
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The WOFD method is due to Jameson [6–8] and is a variant of adaptive wavelet Galerkin method. The
main idea of this method is to use wavelets to generate appropriate grid only, and use the finite difference
method to solve the partial differential equation. Roughly speaking, WOFD method can be divided in two
parts, ‘‘the grid generation’’ and ‘‘differencing’’. Firstly, a wavelet analysis is carried out to find the local vari-
ations of the data. This provides a mechanism for grid generation [7] in such a manner that grid points are
placed sparsely in smooth or low variation regions, and finer in regions of strong variations or high oscilla-
tions. Secondly, a finite difference scheme is used for calculations on this generated grid. WOFD method
was further extended to an adaptive order numerical method (WOFD2) in [8]. This differs from WOFD in
the sense that an appropriate order of finite difference scheme is adapted during the calculations.

In this paper, we present the idea of ‘‘non-static re-gridding’’ which provides an effective implementation of
WOFD method. Hence saving the computational time involved in griddings and reducing the number of
FLOPS.

The amount of work involved to solve a typical problem, on a finer grid, using conventional finite difference
method is approximately same as required to generate coarser grid in WOFD method. Now using finite dif-
ference scheme on this coarser grid amounts to the extra work done in WOFD method. So if re-gridding is
done at each time step then this method will prove to be expensive than the conventional finite difference
method. However, the real advantage of WOFD method over finite difference method is that, for the desired
accuracy, re-griddings are not required at each time step. In standard implementation of WOFD method, re-
griddings are done after a fixed number of time steps, which we call as ‘‘static re-gridding’’.

The aim of non-static re-griddings is to reduce the total number of re-griddings (without significantly loos-
ing the accuracy) involved in the process of finding the solution, as this is the key to improve the time-com-
plexity of the WOFD method. Instead of doing static re-griddings, we analyze the solution after a fixed
number of time steps, to see if re-gridding is needed or not. Suppose in a standard implementation of WOFD
method the static re-griddings are performed N times (after the first gridding at initial time). Let
Ti(i = 1,2, . . . ,N) denote the time at the ith static re-gridding and dt be the time step size in the finite difference
scheme. Then our test (to check whether or not ith re-gridding is needed) basically involves comparison of
solution ui at time Ti � dt with the solution ui�1 at time Ti�1 � dt, for i = 2,3, . . . ,N. For i = 1 the solution
at T1 � dt is compared with the initial condition. Precisely the l1 norm of the difference, (ui � ui�1), of the
solutions being compared is considered for re-gridding. If this value is greater than a given threshold, Ds, then
re-gridding is done otherwise it is skipped. The number of FLOPS involved in this comparison is negligible as
compared to the FLOPS involved in doing the re-gridding. The non-static re-gridding reduces the number of
re-griddings significantly for ranges which have low or smooth variations in time, even if sharp spatial vari-
ations are present. In the presence of oscillatory behavior, in time, our method does not skip re-griddings sig-
nificantly, showing the reliability.

In Sections 2 and 3 we present our numerical experiments on heat equation and Schrödinger equation
respectively, using WOFD with non-static re-gridding. The comparison with corresponding solutions obtained
using static re-griddings is also presented.
2. Heat equation

The first example considered is
ut ¼ uxx þ 4p2 sinð2pxÞ; 0 < x < 1; 0 < t 6 1; ð1Þ
uð0; tÞ ¼ uð1; tÞ ¼ 1; t P 0;

uðx; 0Þ ¼ 1:
The exact solution is uðx; tÞ ¼ 1þ ð1� e�4p2tÞ sinð2pxÞ, which does not have oscillatory variation in time
(Fig. 1).

In the following sub-sections we present numerical solutions of Eq. (1), using non-static re-griddings. We
have obtained results for two different initial grid sizes in order to see the consistency of the average grid points
involved in the calculations.



Fig. 1. Plot of the analytic solution.
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2.1. Initial grid size of 512 points with 32 static re-griddings

The numerical solution of the above problem using WOFD with 32 static re-griddings involves:

• Mega FLOPS for griddings = 4.22;
• average grid size (number of points in finite difference calculations) = 35

and has an error 1.2077 · 10�8, where error means the difference from the analytic solution. For comparison
of results, details of solutions obtained using non-static re-griddings for different values of our threshold
parameter Ds are given in the table below:
Ds N
umber of
griddings

M
(

ega FLOPS
for griddings)

A
s

verage grid
ize (points)

E
rror
0.2
 2 0
.99 7
2 2
.0114 · 10�8
0.01
 5 1
.29 5
1 1
.9697 · 10�8
0.003
 6 1
.34 3
5 1
.2077 · 10�8
0.001
 7 1
.45 3
5 1
.2077 · 10�8
10�7 1
4 2
.23 3
5 1
.2077 · 10�8
10�10 2
0 2
.29 3
5 1
.2077 · 10�8
10�15 2
8 3
.78 3
5 1
.2077 · 10�8
Figs. 2 and 3 give the solution for Ds = 0.003, which is the optimal solution both in terms of FLOPS (with-

out any loss of accuracy) and corresponds to the smallest average grid size.

2.2. Initial grid size of 256 points with 32 static re-griddings

The numerical solution of the above problem using WOFD with 32 static re-griddings involves:

• Mega FLOPS for griddings = 2.49;
• average grid size (number of points in finite difference calculations) = 32
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Fig. 2. Solution; added/removed points for Ds = 0.003.
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Fig. 3. Final solution for Ds = 0.003.
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and has an error 1.0984 · 10�8. The details of solutions obtained using non-static re-griddings for different
values of our threshold parameter Ds are given in the following table:
Ds N
umber of
griddings

M
(

ega FLOPS
for griddings)

A
s

verage grid
ize (points)

E
rror
0.5
 2 0
.56 6
1 1
.1917 · 10�8
0.1
 3 0
.62 3
2 1
.0984 · 10�8
0.05
 4 0
.68 3
2 1
.0984 · 10�8
10�6 1
2 1
.20 3
2 1
.0984 · 10�8
10�9 1
8 1
.59 3
2 1
.0984 · 10�8
10�14 2
8 2
.23 3
2 1
.0984 · 10�8
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Fig. 4. Solution; added/removed points for Ds = 0.1.
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Figs. 4 and 5 give the optimal solution for Ds = 0.1.

3. Schrödinger equation

The second example considered is

Fig. 5. Final solution for Ds = 0.1.
ut ¼ iðuxx þ 2juj2uÞ; �L=2 < x < L=2; t > 0; ð2Þ
uð�L=2; tÞ ¼ uðL=2; tÞ;
uðx; 0Þ ¼ hðxÞ:
The numerical solutions for L = 64 and h(x) = 2sechx are presented in the following sub-sections. For these
cases the errors are computed by taking the difference from the numerical solution obtained using coarsest grid
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(with 1024 points). Here, keeping the initial grid size same, we investigate two different cases on the basis of
different numbers of static re-griddings.

3.1. Initial grid size of 1024 points with 32 static re-griddings

Solution of the above problem using WOFD with 32 static re-griddings involves:

• Mega FLOPS for griddings = 27.92;
• average grid size (number of points in finite difference calculations) = 120

and has an error 4.004 · 10�8. The details of solutions obtained using non-static re-griddings for different val-
ues of our threshold parameter Ds are given in the table below:
Difference N
umber of
griddings

M
(
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Fig. 6. Solu
ega FLOPS
for griddings)
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r Ds = 0.545.
rror
1.25
 6
 7.22 1
56 5
.1672 · 10�4
0.8 1
2 1
1.83 1
30 6
.4576 · 10�6
0.575 1
7 1
5.70 1
22 3
.1162 · 10�7
0.55 1
8 1
6.47 1
21 1
.7094 · 10�7
0.545 1
9 1
7.23 1
20 4
.4721 · 10�8
0.5 2
1 1
8.79 1
20 3
.5408 · 10�8
0.47 2
4 2
1.13 1
20 3
.4610 · 10�8
0.44 2
9 2
5.03 1
20 3
.5986 · 10�8
Figs. 6 and 7 give the optimal solution for Ds = 0.545.
3.2. Initial grid size of 1024 points with 64 static re-griddings

The numerical solution of the above problem using WOFD with 64 static re-griddings involves:

• Mega FLOPS for griddings = 55.65;
• average grid size (number of points in finite difference calculations) = 120
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Fig. 7. Final solution for Ds = 0.545.
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and has an error 3.3008 · 10�8. The details of solutions obtained using non-static re-griddings for different
values of our threshold parameter Ds are given in the following table:
Difference N
umber of
griddings

M
(
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Fig. 8. Sol
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for griddings)
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–gridding 
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r Ds = 0.27.
rror
0.65 1
1 1
4.02 1
78 2
.0606 · 10�4
0.5 1
7 1
8.35 1
46 3
.3152 · 10�5
0.38 2
3 2
2.74 1
29 2
.9600 · 10�6
0.33 2
7 2
5.83 1
24 6
.0347 · 10�7
0.295 3
3 3
0.43 1
23 1
.4805 · 10�7
0.27 3
7 3
3.56 1
20 6
.7192 · 10�8
0.25 4
3 3
8.22 1
20 2
.8401 · 10�8
0.23 5
1 4
4.43 1
20 2
.7880 · 10�8
0.22 6
0 5
1.46 1
20 3
.3838 · 10�8
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Fig. 9. Final solution for Ds = 0.27.
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Figs. 8 and 9 give the optimal solution for Ds = 0.27.
4. Conclusion

The WOFD method for solving partial differential equation uses wavelets to generate appropriate grid for
finite difference scheme. In standard implementation of WOFD method, re-griddings are done after a fixed
number of time steps, which we call as ‘‘static re-gridding’’. In this paper we have presented the idea of
‘‘non-static re-gridding’’ in order to achieve effective implementation of WOFD method. Our scheme is cen-
tered around a threshold value Ds, which is explained in Section 1. The method is applied on Heat and Schrö-
dinger equations and solutions are obtained for different values of Ds. An optimal value of Ds, corresponding
to the optimal solution, is obtained for each case. However, these values are different even for same problem
with varying initial grid size or different number of static re-griddings. It is conjectured that a common optimal
threshold value can be obtained for similar problems by taking Ds to be the l1-norm of the relative difference
(i.e. (ui � ui�1)/ui�1 in the notation of Section 1).
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