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A Game Theoretic Model for Smart Grids
Demand Management

Slim Belhaiza and Uthman Baroudi

Abstract—Demand-side management (DSM) plays a key role
in the future of smart grids. Recently, DSM researchers have
developed various mathematical models to optimize the demand
response. Most of these works ignore the channel impairments’
impact on the optimization process. In this paper, we propose a
new noncooperative game theoretic model for the management
of smart grid’s demand considering the packet error rate in our
formulation. We set the Nash equilibrium conditions for the pro-
posed model. Under an assumption on the form of the utility
functions, we develop a 0-1 mixed linear programming approach
to compute nondominated extreme Nash equilibria. Results on
a numerical example are provided and some useful insights are
presented. Under some assumptions and a fully proven proposi-
tion, a feasible nondominated Nash equilibrium solution is found.
Finally, we report and comment on computational experiments
on randomly generated smart grid DSM game instances with
different characteristics.

Index Terms—Advanced metering infrastructure (AMI),
demand-side management (DSM), game theory, Nash equilib-
rium, smart grid.

I. INTRODUCTION

ASMART grid [1], [2] is an intelligent electric power
infrastructure that collects information via modern com-

munication technologies and in particular wireless networks to
provide efficient, reliable, and cost-saving energy generation
and distribution. A smart grid comprises five major facili-
ties: 1) generation; 2) distributed generation; 3) transmission;
4) distribution; and 5) end user (home/building) [2], [3]. The
ability to monitor and influence each user’s usage in real time
can enable distribution operators match supply with demand
effectively and realize the potential of digital power [3].

“DSM refers to the tools and mechanisms that influence
the customer’s use of energy” [4]. The actions taken by
demand-side management (DSM) can be classified into two
broad categories: 1) reduce consumption; and 2) shift con-
sumption. In the former, we intend to reduce the energy
consumption of individual end customers, while the later
focuses on varying the time of consumption such that the
peak load is reduced. In fact, the specific response depends
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on the metering capabilities deployed in the smart grid. With
the deployment of advanced metering infrastructure (AMI),
advanced demand responses (DR) can be implemented, such
as intelligent direct load control and price policies [4].

AMI is the deployment of interconnected smart meters that
enable two-way communication in order to have continuous
and timely monitoring of meter data, outage reporting, and
service connect/disconnect. In addition, the AMI network is
able to reconfigure due to a failure in communications and
to interconnect to utility billing [5], energy market, and pric-
ing policies [4], [6]–[8]. It is envisioned that smart meters
will encourage consumers to conserve energy by helping them
maintain the quantity and cost of their energy consumption [9].

By the year 2014, worldwide deployment of smart meters is
expected to reach about 212 million units. Yet, there are many
issues and challenges needing to be resolved before the real-
ization of such visionary network. For instance, the process of
replacing the existing energy meters with a smart meter system
is an area challenge for utility companies. Secondly, to have
the full advantage of the smart meter system, we need all the
appliances and devices in the distribution and metering net-
work to be integrated in the communication network. Thirdly,
considering the communications aspects, we can envision sev-
eral issues such as terrestrial difficulties and their impact on
the signal quality and availability, the network range, and its
impact on the network coverage. All these issues lead to low
AMI performance [9]. Therefore, intelligent schemes have to
be developed to overcome the communication problems and in
particular the channel reliability. Recently, several researchers
have explored the impact of channel reliability on the network
performance [10]–[13].

Tuite [10] proposed an adaptive forward error correc-
tion mechanism for smart grids environments, including
500 kV outdoor substation and underground transformer vaults
in order to increase network reliability in wireless sensor
network-based smart grid systems. Considering the transmis-
sion loss of voltage/phase information and its impact on power
generation, this has been investigated in [12]. The power
demand estimation and how it is affected by packet loss due
to wireless channel impairments has been studied in [14]. This
paper focused on optimizing the cost of power supply given
demand uncertainty due to packet loss. In this paper, a queuing
model is used to quantify the packet loss due to congestion at
data aggregation unit (DAU), and then optimize the transmis-
sion rate from the DAU to minimize the impact of packet loss.

In the same direction, Zheng et al. [13] presented method-
ologies for deriving reliability performance of wireless
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Fig. 1. Multitier smart grid communications network with HANs, NANs,
and WANs [16].

communication networks to support DR control. Two wireless
network architectures were considered: 1) the single-hop
infrastructure-based network; and 2) the multihop mesh
network. The communication channel impairments such as
multipath fading and shadowing are infused in the channel
model and according the outage probability and packet loss
were estimated.

From the above brief survey of the existing work in the lit-
erature, we can observe that a little has been done to integrate
the channel impairments and the bandwidth availability in one
model to obtain a strategic policy for DR, which can guarantee
both customers satisfaction and energy providers, while mini-
mize energy fluctuation. Game theory has been proposed as a
powerful tool to solve many issues related to smart grids [15].

In this paper, we are exploiting game theory to design
a control strategy for the DR from energy retailers for
neighborhood-area-network (NAN) customers. NAN comprises
a collection of AMI that may represent a number of build-
ings/houses. Fig. 1 illustrates the multitier structure for the
future smart grid. We can observe in Tier-1 that each smart
meter is interconnecting (either wirelessly or via Ethernet con-
nection) several smart appliances inside the house. Moreover,
Tier-2 (NAN) interconnects the smart meters via a mesh network
that facilitates reliable and fast interconnection among many
AMIs. Finally, Tier-3 represents a wide range of network tech-
nologies (e.g., fiber optics, mobile wireless networks such as 4G)

that connect energy provider/retailers with NAN. It is obvi-
ous that exchanging DR messages over these heterogeneous
networks may lead to multiple transmission errors.

The rest of this paper is organized as follows. The game
theoretic model for retailer-customer problem is described in
Section II. In Section III, we describe the main features and
conditions of our game model. In Section IV, we present
the mathematical programming formulation along with a
discussion and some propositions regarding the solution char-
acteristics. Our computational experiments on randomly gen-
erated SMGDSM games are described in Section V. Finally,
Section VI concludes this paper.

II. GAME THEORETIC MODELS FOR SMART GRIDS

Many authors proposed game theoretic models to solve
some issues related to smart grids. Cui et al. [17] proposed
two models of price determination for energy companies. In
their approach, the energy price competition is modeled as a
n-person game where one’s price strategy affects the payoffs of
others. For their simple first model, a Nash equilibrium [18]
solution is presented and proven to be unique under some
assumptions. Their second model is more sophisticated since
it involves factors such as the cost of energy generation and the
homeowner’s reaction to the change of energy usage as a func-
tion of energy price. For this second model, Cui et al. [17]
presented a practical solution such that no energy company
would be able to increase its expected profit by adjusting the
price function.

Rajasekharan et al. [19] proposed a model for smart grid
households equipped with energy storage systems in a local
neighborhood. In their model, the users cooperate to trade
their real-time energy, supplied by an energy company, and
their stored energy in order to minimize their consumptions’
cost. The cooperation between users is motivated by the differ-
ence in pricing mechanisms adopted by utility companies that
serve the locality. Particularly, they focused on a simple two-
user two-good exchange economy market to illustrate their
approach. They prove that the goods trading market prices
regulate themselves in such a way that both users reduce their
costs.

Atzeni et al. [20], [21] focused on smart grids in which the
demand-side involves traditional users as well as users own-
ing some kind of distributed energy sources and/or energy
storage devices. The latter users are equipped with inde-
pendent central units which enable them to regulate their
monetary energy expense by producing or storing energy
rather than just purchasing their energy needs from the grid.
Atzeni et al. [20], [21] formulated the smart grid DSM prob-
lem as a noncooperative game and analyzed the existence of
optimal strategies. To that aim, they presented a distributed
algorithm to be run on the users’ smart meters.

Nguyen et al. [22] considered a smart power system with
distributed users requesting dynamically their demands to an
energy provider. Simultaneously, the energy provider dynam-
ically updates the energy prices based on the load profiles
of the users. In their model, the users try to minimize the
peak-to-average ratio (PAR) of the power system by charging
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for their batteries at low-demand periods and discharging the
energy at high-demand periods. To do so, Nguyen et al. [22]
proposed a distributed DSM algorithm using a game theoret-
ical approach where each user intends to minimize its total
energy cost. Their simulation results showed that the pro-
posed algorithm simultaneously minimizes the PAR and the
total energy cost. We now introduce the game theoretic model
proposed in this paper.

III. NEW GAME THEORETIC MODEL

FOR SMART GRIDS

Our new theoretic model consists in a noncooperative multi-
agent game where users and providers (e.g., retailers) interact
to regulate a smart grid’s demand. Let n be the total number of
users (households) and p the total number of providers (energy
companies or retailers). We introduce a (n + p)-person nonco-
operative game where each agent aims at maximizing his own
utility depending on a number of conditions. For each user i,
the following conditions are considered.

1) The total amount of energy requested from all providers
cannot exceed his demand.

2) The average amount of energy requested from each
provider j cannot exceed the amount of energy supplied
by j to i.

Simultaneously, for each provider j, the following conditions
are considered.

1) The total amount of energy supplied to all users cannot
exceed their own (production and delivery) capacity.

2) The amount of energy supplied by provider j to each user
i cannot exceed the average amount of energy requested
by i from j.

The use of the expression “average amount of energy
requested” models the probability of having a difference
between the theoretical amount requested and the real amount
requested. The theoretical amount represents the amount of the
requests sent to the provider, while the real amount represents
the amount of the requests received by the provider. This dif-
ference is essentially due to the average packet error rate ρij

measured experimentally during the transmission of the infor-
mation from i to j over the wireless network deployed in the
NAN.

IV. MATHEMATICAL PROGRAMMING FORMULATION

We define the variables, parameters, and the utility functions
used in our formulation in Table I. The variable xij repre-
sents the proportion of energy user i requests from provider j.
Similarly, the variable yij represents the proportion of energy
provider j delivers to user i. The main purpose of the game
theoretical model we propose is to make the users and the
providers interact while all conditions listed above are satisfied
and the utility function of each agent is maximized. Formally,
a Nash equilibrium [18] is a situation where each agent maxi-
mizes his own payoff given what the other agents did. For the
smart grid’s demand management problem, we define a Nash
equilibrium as a situation where users and providers maxi-
mize simultaneously their individual utility functions. None
of the users or providers would have any interest to change

TABLE I
DEFINITION OF THE VARIABLES, PARAMETERS, AND UTILITY FUNCTIONS

unilaterally his proportions vector xi. or yj. The following
Definition 1 of a Nash equilibrium for the smart grid’s demand
management game can be stated.

A. Problem Formulation

For the smart grid’s game we propose, a Nash equilibrium is
a situation where each agent (user or provider) maximizes his
own utility function given the other agents’ decisions. Hence,
for any user i his requests vector x̂i. should belong to the set
of best requests vectors which maximize his utility. Similarly,
for any provider j his delivery vector ŷj should belong to the
set of best deliveries vectors which maximize his utility. The
following formal definition can be stated.

Definition 1: For the smart grid’s game, a Nash equilibrium
is a vector of strategies (x̂1, . . . , x̂n, ŷ1, . . . , ŷp), such that for
each user i and for each provider j, respectively, we have

x̂i. ∈ argmax
xij

p∑

j=1

fij
(
xij, ŷij

)

subject to
p∑

j=1

xij ≤ 1 (1)

(
1 − ρij

)
xij ≤ yij,∀j (2)

xij ≥ 0 (3)

and

ŷ.j ∈ argmax
yij

n∑

i=1

gij
(
x̂ij, yij

)

subject to
p∑

j=1

yij Di ≤ Ci (4)

yij ≤ (
1 − ρij

)
x̂ij,∀i (5)

yij ≥ 0. (6)

Constraint (1) states that the sum of the proportions
requested by the user i cannot exceed one. Constraint (2)
states that the average proportion requested by the user i from
provider j cannot exceed the proportion delivered by provider
j to user i. Constraint (3) states that the proportions xij are
positive. Constraint (4) states that the total quantity delivered
by provider j to all users cannot exceed the capacity of the
provider j. Constraint (5) states that the proportion delivered
by the provider j to user i cannot exceed the average propor-
tion requested by user i from provider j. Finally, constraint (6)
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states that the proportions yij are positive. For simplification,
we will suppose in the next development that the utility func-
tions are of quadratic forms. The main motivation behind this
assumption is to obtain a linear objective function for each
agent involved in the smart grid’s game as it is shown in
Definition 2.

Assumption 1: The utility function for each user i with
respect to each provider j is such that fij(xij, yij) = xijqijyij.
The utility function for each provider j with respect to each
user i is such that gij(xij, yij) = xijpijyij. The parameter qij

represents the quality of the service delivered by provider j
to user i and the parameter pij represents the payoff of the
service delivered by provider j to user i.

Since each player i or j controls only his decision xi. or yj,
and following the Assumption 1, the definition of a Nash equi-
librium for the smart grid’s management game can be stated
using linear programming.

Definition 2: For the smart grid’s game, a Nash equilibrium
is a vector of strategies (x̂1, . . . , x̂n, ŷ1, . . . , ŷp), such that for
each user i and for each provider j, respectively, we have

x̂i. ∈ argmax
xij

p∑

j=1

xijqijŷij

subject to
p∑

j=1

xij ≤ 1
(
1 − ρij

)
xij ≤ ŷij,∀jxij ≥ 0

and

ŷ.j ∈ argmax
yij

n∑

i=1

x̂ijpijyij

subject to
n∑

i=1

yijDi ≤ Cjyij ≤ (
1 − ρij

)
x̂ij,∀iyij ≥ 0.

From duality theory, we obtain the following dual programs
for each user i and for each provider j, respectively:

min∝ij,δi

p∑

j=1

∝ijŷij + δi

subject to ∝ij + (
1 − ρij

)
δi ≥ pijŷij,∀j (7)

∝ij, δi ≥ 0 (8)

and

min
βj,λij

Cjβj +
n∑

i=1

(
1 − ρij

)
x̂ijλij

subject to Diβj + λij ≥ x̂ijpij,∀i (9)

βj, λij ≥ 0. (10)

Hence, the following definition of a Nash equilibrium for
the smart grid’s management game can be stated using dual
linear programming.

Definition 3: Given a smart grid’s game, for each Nash
equilibrium (x̂1., . . . , x̂n., ŷ.1, . . . , ŷ.p), there exist for each user
i at least one appropriate positive variable δ̂i and at least
one appropriate vector of positive variables ∝̂i, and for each
provider j there exist at least one appropriate positive variable
β̂j and at least one appropriate vector of positive variables λ̂j,

such that for each user i and for each provider j, respectively,
we have

(∝̂i., δ̂i
)∈ argmin∝ij,δi

p∑

j=1

∝ijŷij + δi

subject to ∝ij + (
1 − ρij

)
δi ≥ qijŷij,∀j∝ij, δi ≥ 0

and

(̂
λ.j, β̂j

) ∈ argmin
βj,λij

Cjβj +
n∑

i=1

(
1 − ρij

)
x̂ijλij

subject toDiβj + λij ≥ x̂ijpij,∀iβj, λij ≥ 0.

The primal-dual optimality conditions can be expressed as
follows. For each user i, and for each provider j, respectively,
we have

(
∝̂ij + (

1 − ρij
)
δ̂i − qijŷij

)
x̂ij = 0,∀j (11)

(
Diβ̂j + λ̂ij − x̂ijpij

)
ŷij = 0,∀i. (12)

These conditions can be linearized using the binary variables
uij and vij, and the large real parameter L as shown in [24]

(
∝̂ij + (

1 − ρij
)
δ̂i − qijŷij

)
x̂ij = 0,∀i, j

⇒
⎧
⎨

⎩

∝̂ij + (
1 − ρij

)
δ̂i − qijŷij ≤ Luij (13)

x̂ij + uij ≤ 1 (14)

uij binary (15)
(
Diβ̂j + λ̂ij − x̂ijpij

)
ŷij = 0,∀i.

⇒
⎧
⎨

⎩

Diβ̂j + λ̂ij − x̂ijpij ≤ Lvij (16)

ŷij + vij ≤ 1 (17)

vij binary. (18)

B. Nash Equilibrium Conditions

The following Proposition 1 formally compiles all the
conditions to be satisfied by a Nash equilibrium.

Proposition 1: For the smart grid’s demand management
game, any Nash equilibrium (x̂1., . . . , x̂n., ŷ.1, . . . , ŷ.p), satis-
fies the following conditions:

p∑

j=1

x̂ij ≤ 1, ∀i

n∑

i=1

ŷijDi ≤ Cj, ∀j

(
1 − ρij

)
x̂ij ≤ ŷij, ∀i, j

ŷij ≤ (
1 − ρij

)
, ∀i, j

∝̂ij + (
1 − ρij

)
δ̂i ≥ qijŷij, ∀i, j

Diβ̂j + λ̂ij ≥ x̂ijpij, ∀i, j

∝̂ij + (
1 − ρij

)
δ̂i − qijŷij ≤ Luij, ∀i, j

Diβ̂j + λ̂ij − x̂ijpij ≤ Lvij, ∀i, j

x̂ij + uij ≤ 1, ∀i, j

ŷij + vij ≤ 1, ∀i, j

x̂ij, ŷij, ∝̂ij, δ̂i, β̂j, λ̂ij ≥ 0

uij, vij binaries.
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Proof: Any Nash equilibrium satisfies the primal conditions
of Definition 1 and the dual conditions of Definition 2 as well
as all complementary slackness conditions. Hence, any Nash
equilibrium satisfies the conditions of Proposition 1.

It is clear that at any Nash equilibrium, we would
have (1 − ρij)x̂ij = ŷij, for each user i and each
provider j. In the following development, we propose to
compute the Nash equilibrium of the smart grid’s DSM
game (SMGDSM) which optimizes one of the following
objectives:

1) maximization of the minimum sum of proportions sat-
isfied for the SMGDSM game users;

2) maximization of the minimum utility for the SMGDSM
game users;

3) maximization of the minimum utility for the SMGDSM
game providers.

The master problem (P) corresponds to a 0–1 mixed pro-
gram resulting from the conditions of Proposition 1

max
xij, yij, αij, δi, λijβ j

subject to Z
p∑

j=1

xij ≤ 1, ∀i

n∑

i=1

yijDi ≤ Cj, ∀j

(
1 − ρij

)
xij ≤ yij, ∀i, j

yij ≤ (
1 − ρij

)
, ∀i, j

∝ij + (
1 − ρij

)
δi ≥ qijyij ∀i, j

Diβj + λij ≥ xijpij, ∀i, j

∝ij + (
1 − ρij

)
δi − qijyij ≤ Luij, ∀i, j

Diβj + λij − xijpij ≤ Lvij, ∀i, j

xij + uij ≤ 1, ∀i, j

yij + vij ≤ 1, ∀i, j

xij, yij, αij, δi, βj, λij ≥ 0

uij, vij binaries.

Note that the first objective function Z = Z1 chosen intends
to generate a Nash equilibrium which maximizes the minimum
sum of proportions satisfied of the SMGDSM game user’s
needs

max Z = Z1

subject to Z1 ≤
p∑

j=1

xij,∀i = 1, . . . , n. (19)

In the case where Z = Z1 and the conditions (19) are added,
the master program (P) becomes a 0–1 mixed linear program.
The second possible objective function Z2 chosen intends to
generate a Nash equilibrium which maximizes the minimum
utility of the SMGDSM game users. Since the utility of the
SMGDSM game users is quadratic, following Assumption 1,
and yij = (1 − ρij)xij at any Nash equilibrium, one can write:

fij
(
xij, yij

) = xijqijyij = (
1 − ρij

)
qijx

2
ij.

Fig. 2. Example of AMI where a group of users (green nodes) communicates
their demands with two providers (red nodes); each provider may exchange
information with other providers.

Hence, the second objective function Z = Z2 is such that

max Z = Z2

subject to Z2 ≤
p∑

j=1

(
1 − ρij

)
qijx

2
ij,∀i = 1, . . . , n. (20)

In the case where Z = Z2 and the conditions (20) are added,
the master program (P) becomes a 0-1 mixed quadratic pro-
gram. The third possible objective function Z3 chosen intends
to generate a Nash equilibrium which maximizes the min-
imum utility of the SMGDSM game providers. Since the
utility of the SMGDSM game providers is quadratic, following
Assumption 1, and yij = (1 − ρij)xij at any Nash equilibrium,
one can write:

gij
(
xij, yij

) = xijpijyij = (
1 − ρij

)
pijx

2
ij.

Hence, the second objective function Z = Z3 is such that

max Z3

subject to Z3 ≤
n∑

i=1

(
1 − ρij

)
qijx

2
ij,∀j = 1, . . . , p. (21)

In the case where Z = Z3 and the conditions (21) are added,
the master program (P) becomes also a 0-1 mixed quadratic
program.

C. Discussion

Fig. 2 illustrates a simple schematic connected AMI where
three users and two providers are exchanging DR messages.

In this example, users and providers exchange demand,
price, and capacity information over wireless channels. Each
user node may represent a group of homes connected via one
controller. In this example, we assume a noncooperative game
scenario. There is no communication among the users regard-
ing their demand, strategy, etc. In addition, the providers can
possibly exchange information about their loads.

Let Q and P be the utility matrices of its corresponding
smart grid’s demand management game. In this example, we
use positive and negative utility values. These values are con-
tinuously monitored and estimated by individual users based
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on the pros and cons of receiving power from this specific
provider [7], [9], [25], [26]. For instance, user#1 does not pre-
fer to receive power from provider#2 and hence the announced
utility value is “−5,” while it prefers to receive power from
provider#1. On the other hand, user#2 has the opposite pref-
erence. Later, in Assumption 4.8, we will introduce a more
practical approach to define these payoffs

Q =
⎛

⎝
2 −5

−3 4
4 2

⎞

⎠ and P =
⎛

⎝
1 4
3 5

−9 4

⎞

⎠.

Let also D and C, respectively, be the users demand and
providers capacity vectors

D =
⎛

⎝
3

10
7

⎞

⎠ and C = (
10 10

)
.

Considering the maximization of the minimum sum of
proportions satisfied Z1 and1 ρij = 0.01 (∀i, j), the Nash equi-
librium (X∗, Y∗) is found by the state-of-the-art optimization
software Gurobi 5.6 [23], such that

X∗ =
⎛

⎝
1 0
0 0.5942
0 0.5942

⎞

⎠ and Y∗ =
⎛

⎝
0.99 0

0 0.5882
0 0.5882

⎞

⎠.

The nondominated Nash equilibrium found for the previous
numerical example suggests the following insights.

Insight 1: Any user would prefer delaying its demand if
the only remaining possibility provides a negative payoff, as
in the case of user 2 with respect to provider 1, where only
59.42% of his need is satisfied.

Insight 2: Any provider would prefer not responding to any
request which generates a negative payoff. A zero quantity is
then preferred to any nonzero quantity sent, as in the case of
provider 1 with respect to user 3.

Insight 3: The packet error rate is directly affecting the total
delivered power by the concerned providers.

The immediate implication of the insights 1 and 2 is that if
the providers’ total capacity enables the smart grid to satisfy
totally all the users demands with nonnegative payoffs for both
users and providers, then any user would prefer not delaying
its demand.

Insight 4: Any user would prefer not delaying its demand
if he can be served with nonnegative payoffs for him and his
provider.

D. Solution Characteristics

While the previous insights are straightforward, the follow-
ing Proposition 2 shows that if all the entries of the payoff
matrices Q and P are nonnegative, and if it is possible to satisfy
all the users demands with a solution such that the variables xij

are either equal to zero or one, then this solution is a nondom-
inated Nash equilibrium. This issue is important as in practice
users may prefer to request energy from a single retailer and
not from several ones. In the proof of the Proposition 2, we
show that it is always possible in this case to find at least

1The average value of the packet error rate between each pair user-provider.

one feasible solution satisfying all the conditions of a Nash
equilibrium.

Proposition 2: If the entries of the payoff matrices Q and
P are all nonnegative, let X∗ = (x∗

ij) be a vector of variables
such that all the users demands are totally satisfied and the
entries x∗

ij are either equal to zero or one, then X∗ = (x∗
ij) is a

nondominated Nash equilibrium for the smart grid’s demand
management game.

Proof: If X∗ = x∗
ij is a vector of variables such that all the

users demands are totally satisfied and the entries x∗
ij are either

equal to zero or one. In the first part of the proof, we show that
it is always possible to find a feasible setting for the variables
δi and ∝ij if the entries of the matrix Q are all positive. In the
second part of the proof, we show that it is always possible to
find a feasible setting for the variables βj and λij if the entries
of the matrix P are all positive. Finally, we conclude that the
Nash equilibrium is nondominated.

1) Part 1: For a given user i, let j∗ be the index of the
provider satisfying the whole demand of user i and let j0 be
the index of any other provider. Hence, we have xij∗ = 1
and xij0 = 0. Thus, the complementary slackness condition
(∝ij + (1 − ρij)δi − qijyij)xij = 0 is satisfied for each j0,
since xij0 = 0. For the remaining index j∗, the only possi-
bility to satisfy the complementary slackness condition is to
set δi = αij∗/1 − ρij − qij, since yij∗ = (1 − ρ)xij∗ = 1 − ρ.
Because qij∗ ≥ 0, one feasible solution would be to set
αij∗ = (1 − ρ)qij∗ . This way δi = 0 and by substituting in
the condition (∝ij0 + (1 − ρ)δi) ≥ qij0 y

ij0
, with yij0 = 0, any

solution where ∝ij0 ≥ 0 is feasible.
2) Part 2: For a given provider j, let i∗ be the index of

any user i for which the demand is totally satisfied by j.
Let also i0 be the index of any other user. Hence, yi∗j = 1
and yi0j = 0. Thus, the complementary slackness condi-
tion (Diβj + λij − xijpij)yij is satisfied for each i0, since
yi0j = 0. For the remaining indices i∗, the only possibil-
ity to satisfy the complementary slackness condition is to
set βj = pi∗j − λi∗j/Di∗ , since yi∗j = (1 − ρ)xi∗j = 1 − ρ.
Because pi∗j ≥ 0, one feasible solution would be to set
λi∗j = pi∗j. This way βj = 0, and by substituting in the condi-
tion Di0βj + λi0j ≥ xi0jpi0j, with xi∗j = 0, any solution where
λi0j ≥ 0 is feasible.

3) Conclusion: Since X∗ = (x∗
ij) is a vector of variables

such that all the users’ demands are totally satisfied, then
X∗ = (x∗

ij) defines a nondominated Nash equilibrium. A
feasible setting of the variables would be

y∗
ij = (1 − ρ) x∗

ij

δi = 0

αij∗ = (1 − ρ) qij∗

αij0 = 0

βj = 0

λi∗j = pi∗j

λi0j = 0. �

Based on Proposition 2, we can set the entries of the payoff
matrices P and Q to reasonable values using the user’s demand
and the provider’s capacity.
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TABLE II
COMPUTATIONAL RESULTS ON RANDOM

SMGDSM GAMES (SET 1)

Assumption 2: The entries of the payoff matrices P and Q
are defined such that

qij = Di and pij = Ci

Di
.

From the user’s point of view, this choice of the utility
parameters sets an equivalence between the user’s utility and
his demand. While from the provider’s point of view, this
choice penalizes the users with large demands or demands
exceeding the provider’s capacity.

V. COMPUTATIONAL RESULTS

Our computational experiments on randomly generated
SMGDSM games with different size are presented in
Tables II and III. These experimental results were obtained
under Windows 7, on workstations with 2.4 GHz Intel Core
i5 processors, and 2.93 GB RAM. The state-of-the-art soft-
ware Gurobi 5.6 [16] was used for the optimization of the
0–1 mixed linear programs. Our computational results are
obtained on two sets of instances. The first set of instances
“Set 1” (smg01–smg30) involves a number of users ranging
from 60 to 120 and a number of providers ranging from 2 to 4.
For this set of 30 different instances, all the user’s needs can
be fully satisfied by the providers. The results on the first set of
instances are presented in Table II. The second set of instances
“Set 2” (smg31–smg60) involves a number of users ranging
from 50 to 100 and a number of providers ranging from 2 to 5.
For this set of 30 different instances, the user’s needs cannot

TABLE III
COMPUTATIONAL RESULTS ON RANDOM

SMGDSM GAMES (SET 2)

be fully satisfied by the providers. The results on the second
set of instances are presented in Table III.

For the entries in Tables II and III, the column “instance”
indicates the name of the instance solved. The column “size”
indicates the original size of the generated set of SMGDSM
game. For each given size, we have randomly generated ten
different SMGDSM games. The columns “n” and “p” indicate,
respectively, the number of users and the number of providers.
The column “Opt Zbin” indicates the value each of the optimal
objective functions Z1, Z2, and Z3, when the xij variables are
considered as binary variables so each user i cannot be served
by more than one provider. Since for xij as binary variables
we always have x2

ij = xij, the nonlinearity appearing with the
use of Z2 or Z3 as objectives is eliminated. Finally, the col-
umn “time” indicates the execution time (in seconds) per game
when the objective function Z3 is chosen.

The entries noted with “∗” indicate that the value of
Table III objective Z3 is the best found while the optimiza-
tion was automatically interrupted and the workstation ran out
of memory. Although it is not appearing in these tables, for
both sets 1 and 2, the optimal solutions with the objectives
Z1 and Z2 were obtained in less than 0.05 s.

A single user in our model could refer to a group of domes-
tic users within a city or urban area. We can agree that it is
more realistic to assign a pool of neighboring houses to a
given provider than it is the case if every single domestic user
chooses his own provider. In the case where a large number of
users have to be considered, a time upper bound could be set
such that the current best solution found by the optimizer is
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returned and the optimization process is stopped. In addition,
heuristic optimization algorithms such as variable neighbor-
hood search or Tabu search can be used to obtain a good
solution quality in reasonable time.

VI. CONCLUSION

In this paper, we proposed and studied a new noncooperative
multiagent game theoretic model for managing the demands
of a group of smart grid users. Using primal-dual optimality
conditions, the Nash equilibrium conditions for the proposed
model are set. Under an assumption on the form of the utility
functions, we developed a 0-1 mixed programming approach
to compute nondominated extreme Nash equilibria. To do so,
we have used three different objective functions. With the
first objective, we intended to maximize the minimum sum
of proportions satisfied for the game users. With the second
objective, we intended to maximize the minimum utility of the
game users. Finally, with the third objective, we intended to
maximize the minimum utility of the game providers. We have
presented our computational results on randomly generated
smart grid demand management games with different size. As
a future work, we shall consider the impact of instantaneous
error on heterogeneous users.
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