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Abstract The algebraic connectivity a(G) of a graph G = (V, E )  is the second 
smallest eigenvalue of its Laplacian matrix. Using the AutoGraphiX 
(AGX) system, extremal graphs for algebraic connectivity of G in func- 
tion of its order n = IVI and size m = \El are studied. Several con- 
jectures on the structure of those graphs, and implied bounds on the 
algebraic connectivity, are obtained. Some of them are proved, e.g., if 
G # Kn 

a(G) < 1-1 + v'-1 
which is sharp for all m 2 2. 

1. Introduction 
Computers are increasingly used in graph theory. Determining the 

numerical value of graph invariants has been done extensively since the 
fifties of last century. Many further tasks have since been explored. Spe- 
cialized programs helped, often through enumeration of specific families 
of graphs or subgraphs, to prove important theorems. The prominent ex- 
ample is, of course, the Four-color Theorem (Appel and Haken, 1977a,b, 
1989; Robertson et al., 1997). General programs for graph enumera- 
tion, susceptible to take into account a variety of constraints and exploit 
symmetry, were dso  developped (see, e.g., McKay, 1990, 1998). An in- 
teractive approach to graph generation, display, modification and study 
through many parameters has been pioneered in the system Graph of 
Cvetkovii: and Kraus (1983), Cvetkovii: et al. (1981), and Cvetkovii: and 
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SimiC (1994) which led to numerous research papers. Several systems 
for obtaining conjectures in an automated or computer-assisted way have 
been proposed (see, e.g., Hansen, 2002, for a recent survey). The Auto- 
Graphix (AGX) system, developed at GERAD, Montreal since 1997 (see, 
e.g., Caporossi and Hansen, 2000,2004) is designed to address the follow- 
ing tasks: (a) Find a graph satisfying given constraints; (b) Find optimal 
or near-optimal values for a graph invariant subject to constraints; (c) 
Refute conjectures (or repair them); (d) Suggest conjectures (or sharpen 
existing ones); (e) Suggest lines of proof. 

The basic idea is to address all those tasks through heuristic search of 
one or a family of extremal graphs. This can be done in a unified way, 
i.e., for any formula on one or several invariants and subject to con- 
straints, with the Variable Neighborhood Search (VNS) metaheuristic 
of MladenoviC and Hansen (1997) and Hansen and MladenoviC (2001). 
Given a formula, VNS first searches a local minimum on the family of 
graphs with possibly some parameters fixed such as the number of ver- 
tices n or the number of edges m. This is done by making elementary 
changes in a greedy way (i.e., decreasing most the objective, in case of 
minimization) on a given initial graph: rotation of an edge (changing 
one of its endpoints), removal or addition of one edge, short-cut (i.e., 
replacing a 2-path by a single edge) detour (the reverse of the previous 
operation), insertion or removal of a vertex and the like. Once a local 
minimum is reached, the corresponding graph is perturbed increasingly, 
by choosing at random another graph in a farther and farther neighbor- 
hood. A descent is then performed from this perturbed graph. Three 
cases may occur: (i) one gets back to the unperturbed local optimum, or 
(ii) one gets to a new local optimum with an equal or worse value than 
the unperturbed one, in which case one moves to the next neighbor- 
hood, or (iii) one gets to a new local optimum with a better value than 
the unperturbed one, in which case one recenters the search there. The 
neighborhoods for perturbation are usually nested and obtained from the 
unperturbed graph by addition, removal or moving of 1,2, . . . , k edges. 

Refuting conjectures given in inequality form, i.e., il(G) 5 in(G) 
where il and ip are invariants, is done by minimizing the difference be- 
tween right and left hand sides; a graph with a negative value then refutes 
the conjectures. Obtaining new conjectures is done from values of invari- 
ants for a family of (presumably) extremal graphs depending on some 
parameter(s) (usually n and/or m). Three ways are used (Caporossi 
and Hansen, 2004): (i) a numerical way, which exploits the mathemat- 
ics of Principal Component Analysis to find a basis of affine relations 
between graph invariants satisfied by those extremal graphs considered; 
(ii) a geometric way, i.e., finding with a "gift-wrapping" algorithm the 
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convex hull of the set of points corresponding to the extremal graph in 
invariants space: each facet then gives a linear inequality; (iii) an alge- 
braic way, which consists in determining the class to which all extremal 
graphs belong, if there is one (often it is a simple one such as paths, stars, 
complete graphs, etc); then formulae giving the value of individual in- 
variants in function of n and/or m are combined. Obtaining possible 
lines of proof is done by checking if one or just a few of the elementary 
changes always suffice to get the extremal graphs found; if so, one can 
try to show that it is possible to apply such changes to any graph of the 
class under study. 

Recall that the Laplacian matrix L(G) of a graph G = (V, E) is the 
difference of a diagonal matrix with values equal to the degrees of vertices 
of G, and the adjacency matrix of G. The algebraic connectivity of G is 
the second smallest eigenvalue of the Laplacian matrix (Fiedler, 1973). 
In this paper, we apply AGX to get structural conjectures for graphs 
with minimum and maximum al.gebraic connectivity given their order 
n = IVI and size m = IEl, as well as implied bounds on the algebraic 
connectivity. 

The paper is organized as follows. Definitions, notation and basic re- 
sults on algebraic connectivity are recalled in the next section. Graphs 
with minimum algebraic connectivity are studied in Section 3; it is con- 
jectured that they are path-complete graphs (Harary, 1962; Soltks, 1991); 
a lower bound on a(G) is proved for one family of such graphs. Graphs 
with maximum algebraic connectivity are studied in Section 4. Extremal 
graphs are shown to be complements of disjoint triangles, paths P3, edges 
K2 and isolated vertices K1. A best possible upper bound on a(G) in 
function of m is then found and proved. 

2. Definitions and basic results concerning 
algebraic connectivity 

Consider again a graph G = (v(G), E(G)) such that V(G) is the 
set of vertices with cardinality n and E(G) is the set of edges with 
cardinality m. Each e E E(G) is represented by eij = {vi,vj) and 
in this case, we say that vi is adjacent to vj. The adjacency matrix 
A = [aij] is an n x n rnatrix such that aij = 1, when vi and vj are 
adjacent and aij = 0, otherwise. The degree of vi, denoted d(vi), is the 
number of edges incident with vi. The maximum degree of G, A(G), 
is the largest vertex degrees of G. The minzmum degree of G, 6(G), is 
defined analogously. The vertex (or edge) connectivity of G, K(G) (or 
K'(G)) is the' minimum number of vertices (or edges) whose removal from 
G results in a, disconnected graph or a trivial one. A path from v to w 
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in G is a sequence of distinct vertices starting with v and ending with 
w such that consecutive vertices are adjacent. Its length is equal to its 
number of edges. A graph is connected if for every pair of vertices, there 
is a path linking them. The distance dG(v, w) between two vertices v 
and w in a connected graph is the length of the shortest path from v to 
w. The diameter of a graph G, dG, is the maximum distance between 
two distinct vertices. A path in G from a node to itself is referred to as 
a cycle. 'A  connected acyclic graph is called a tree. A complete graph, 
Kn, is a graph with n vertices such that for every pair of vertices there 
is an edge. A clique of G is an induced subgraph of G which is complete. 
The size of the largest clique, denoted w(G), is called clique number. An 
empty graph, or a trivial one, has an empty edge set. A set of pairwise 
non adjacent vertices is called an independent set. The size of the largest 
independent set, denoted a(G),  is the independence number. For further 
definitions see Godsil and Royle (2001). 

As mentionned above, the Laplacian of a graph G is defined as the 
n x n matrix 

L(G) = A - A, (1.1) 

when A is the adjacency matrix of G and A is the diagonal matrix whose 
elements are the vertex degrees of G, called the degree matrix of G. L(G) 
can be associated with a positive semidefinite quadratic form, as we can 
see in the following proposition: 

PROPOSITION 1.1 (MERRIS, 1994) Let G be a graph. If the quadratic 
form related to L(G) is 

then q is positive semidefinite. 

The polynomial pqG)(X) = det(XI - L(G)) = An + qlXn-l + + 
qn-1X + q, is called the characteristic polynomial of L(G). Its spectrum 
is 

5(G) ( X I ,  An-1, An), (1.2) 

where Vi, 1 5 i 5 n,  Xi is an eigenvalue of L(G) and X1 2 . . . > A,. 
According to Proposition 1 .I, Vi, 1 5 i 5 n,  Xi is a non-negative real 

number. Fiedler (1973) defined as the algebraic connectivity of G, 
denoted a(G). 

We next recall some inequalities related to algebraic connectivity of 
graphs. These properties can be found in the surveys of Fiedler (1973) 
and Merris (1994). 
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PROPOSITION 1.2 Let G1 and G2 be spanning graphs of G such that 
E(G1) n E(G2) = 4. Then  a(G1) + a(G2) I a(G1 U G2). 

PROPOSITION 1.3 Let G be a graph and GI a subgraph obtained from G 
by removing k vertices and all adjacent edges i n  G. Then 

PROPOSITION 1.4 Let G be a graph. Then, 

(1) a(G) I [n/(n - 1)]6(G) I 21El/(n - 1); 
(2) a(G) 1 2 6 ( G )  - n + 2. 

PROPOSITION 1.5 Let G be a graph with n vertices and G # Kn. Sup- 
pose that G contains an  independent set with p vertices. Then,  

PROPOSITION 1.6 Let G be a graph with n vertices. If G # Kn then 
a(G) 5 n - 2. 

PROPOSITION 1.7 Let G be a graph with n vertices and m edges. If 
G # K, then 

PROPOSITION 1.8 If G # Kn then a(G) I 6(G) I K(G). For G = Kn, 
we have a(K,) = n and 6(Kn) = 6(Kn) = n - 1. 

PROPOSITION 1.9 If G is  a connected graph with n vertices and diameter 
dG, then a(G) 2 4 /ndG and d~ 5 &A(G)/U(G) log2(n2). 

PROPOSITION 1.10 Let T be a tree with n vertices and diameter dT.  
Then,  

a(T) 5 2 1 - cos - [ ( d r : J I  

A partial graph of G is a graph G1 such that V(G1) = V(G) and 
E(G1) c E(G). 

PROPOSITION 1.11 If GI is  a partial graph of G then a(G1) I a(G). 

Moreover 

PROPOSITION 1. P 2 Consider a path Pn and a graph G with n vertices. 
 hen,' a(Pn) 5 a,(G). 
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Consider graphs GI = (V(Gl), E(G1)) and G2 = (V(G2), E(G2)).  
The Cartesian product of G1 and G2 is a graph G1 x G2 such that 
V(Gi x G2) = V(G1) x V(G2) and ((ui, ua), (vi, va)) E E(G1 x G2) if 
and only if either ul = vl and (u2, v2) E E(G2) or (ul, vl) E E(G1) and 
U2 = V2. 

PROPOSITION 1.13 Let G1 and G2 be graphs. Then, 

3. Minimizing a(G)  

When minimizing a(G) we found systematically graphs belonging to a 
little-known family, called path-complete graphs by Soltks (1991). They 
were previously considered by Harary (1962) who proved that they are 
(non-unique) connected graphs with n vertices, m edges and maximum 
diameter. Soltks (1991) proved that they are the unique connected 
graphs with n vertices, m edges and maximum average distance between 
pairs of vertices. Path-complete graphs are defined as follows: they con- 
sist of a complete graph, an isolated vertex or a path and one or several 
edges joining one end vertex of the path (or the isolated vertex) to one 
or several vertices of the clique, see Figure 1.1 for an illustration. We 
will need a more precise definition: 

For n and t E N when 1 5 t 5 n - 2, we consider a new family of 
connected graphs with n vertices and mt(r)  edges as follows: 

G(n,mt(r))  = {G I for t 5 r 5 n - 2, G has mt(r) edges, 

mt(r) = ( n - t ) ( n - t  - 1) /2+r ) .  

DEFINITION 1.1 Let n , m , t , p  E W, with 1 5  t 5 n - 2  and 1 5  p 5 
n -. t - 1. A graph with n vertices and m edges such that 

( n - t ) ( n - t - 1 )  (n - t)(n - t - 1) 
+ t l m <  

2 
+ n - 2  

2 
is called (n,p,  t) path-complete graph, denoted PCn,p,t, if and only if 
(1) the maximal clique of PCn,p,t is 

(2) has a t-path PtS1 = [vo, vl, v2, . . . , vt] such that vo E Kn-t n 
Pt+1 and vl is joined to Kn-t by p edges; 

(3) there are no other edges. 

Figure 1.1 displays a (n,p, t) path-complete graph. 
It  is easy to see that all connected graphs with n vertices can be 

partitioned into the disjoint union of the following subfamilies: 

Besides, for every (n,p,  t), PCn,p,t E G(n, mt). 
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Figure 1.1. A ( n , p , t )  path-complete graph 

Figure 1.2. Path-complete graphs 

3.1 Obtaining conjectures 

Using AGX, connected graphs G # Kn with (presumably) minimum 
algebraic connectivity were determined for 3 5 n 5 11 and n - 1 5 m 5 
n(n - 1)/2 - 1. As all graphs turned out to belong to the same family, 
a structural conjecture was readily obtained. 

CONJECTURE 1.1 The connected graphs G # Kn with minimum alge- 
braic connectivity are all path-complete graphs. 

A few examples are given in Figure 1.2, for n = 10. 
Numerical values of a(G) for all extremal graphs found are given in 

Table 1.1, for n = 10 and n .- 1 < m < n(n -. 1)/2 -- 1. 
For each n,  a piecewise concave function of m is obtained. From this 

table and the corresponding Figure 1.3 we obtain: 
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Table 1.1. n = 10; min a(G) on m 

Figure 1.9. min a(G) ; a(G) on m 

CONJECTURE 1.2 For each n > 3, the minimum algebraic connectivity 
of a graph G with n vertices and m edges is an increasing, piecewise 
concave function of m. Moreover, each concave piece corresponds to a 
family of path-complete graphs. Finally, for t = 1, a ( G )  = S ( G ) ,  
and for t > 2, a ( G )  5 1. 

3.2 Proofs 

We do not have a proof of Conjecture 1.1, nor a complete proof of 
Conjecture 1.2. However, we can prove some of the results of the latter. 
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We now prove that, under certain conditions, the algebraic connectivity 
of a path-complete graph minimizes the algebraic connectivity of every 
graph in G(n, mt), when t = 1 and t = 2. 

Proof. Let us start with the second statement. According to the defini- 
tion of path-complete graph, 6(&,p,t) = 1, when t 2 2. From Proposi- 
tions 1.8 and 1.11, we obtain the following inequalities 

Therefore, a(PCn,p,t) I 1. 
Now, consider the first statement. Let t = 1 and PCn,p,1 be the 

complement graph of PCn,P,l. Figure 1.4 shows both graphs, PCn,p,l 
and PCn,p,l. 

PCn,p,l has p isolated vertices and one connected component isomor- 
phic to Kl,n-p -1. Its Laplacian matrix is, 

From Biggs (1993), we have 

Then, 

According to Merris (1994), if <(G) = (.An, An-1, .,. . , X2, 0) then <(c) 
= (n - X2, n - As, .  . . , n - An,  0). So, we have 

Consequently, a(PC,,p:l ) = p. 0 

PROPERTY 1.2 For (n, p, 1) path-complete graphs, we have S(PCn,p,l) = 
@'Cn,p,l) = P. 

Proof. It  follows from Definition 1.1, that C ~ ( P C ~ , ~ , J )  = p. Applying 
Proposition 1.8 we obtain U ( P C , , ~ , ~ )  5 k(PCn,P,l) 5 p. Since Prop- 
erty 1.1 gives a(PCn.p,lj ='p then k(PCn,p,l) = p. 
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Fzgure i.4. PCn,,,l and its complement PCn,,,l 

Figure 1.5. Graphs K1,,-1 and GI 

PROPOSITION 1.14 Among all G E G(n, ml)  with maximum degree n - 
1, a(G) is minimized by PC,J,~. 

Proof. Let G be a graph with n vertices. Consider spanning graphs 
of G K1,,-1 and G1 such that E(K1,n-l) n E(G1) = q5 and G1 has two 
connected components, one of them with n- 1 vertices. Figure 1.5 shows 
these graphs. 

We may consider G = (V, E) where V(G) = V(K1,,-1) = V(G1) 
and E(G) = E(K1,n-l) U E(G1). Then, A(G) = n - 1. According 
to Proposition 1.2, we have U ( K ~ , , - ~ )  + a(G1) 5 a(G). From Biggs 
(1993), U ( K ~ , , - ~ )  = 1. Since G1 is a disconnected graph then a(G1) = 0. 
However, a(PCn,l,l) = 1, therefore a(G) 2 1. 0 
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PROPOSITION 1.15 For every G E G(n, ml)  such that S(G) 2 (n - 2)/2 
+ p/2, where 1 < p < n - 2, we have 

Proof. Consider G E G(n, ml)  with 6(G) (n - 2)/2 + p/2. According 
to Proposition 1.4, we have 

Consequently, a(G) 2 a(PCn,p,l) = p. 

PROPOSITION 1.16 For every G E G(n, m2) such that S(G) > (n - 1)/2, 
we have 

a(G) L 1 L a(PCn,p,2). 

Proof. Consider G E G(n, m2) with S(G) > (n - 1)/2. According to 
Proposition 1.4, we have 

From Property 1.1, a(PCn,p,2) 5 1. Then, a(G) 2 1 2 a(PCn,p,2). 0 

To close this section we recall a well-known result. 

PROPOSITION 1.17 Let T be a tree with n vertices. For every T, a(T) 
is minimized by the algebraic connectivity of a single path Pn, where 
a(P,) = 2[1 - cos(.lr/n)]. Moreover, for every graph G with n vertices 
a(Pn) < a(G)+ 

4. Maximizing a(G)  

4.1 0 btaining conjectures 
Using AGX, connected graphs G # Kn with (presumably) maxi- 

mum algebraic connectivity a(G) were determined for 3 < n < 10 and 
(n - I)(n - 2)/2 < m < n(n - 1)/2 - 1. We then focused on those 
among them with maximum a(G) for a given m. These graphs having 
many edges, it is easier to understand their structure by considering 
their complement c. It appears that these c are composed of disjoint 
triangles Kg, paths P3, edges K2 and isolated vertices K1. 

A representative subset of these graphs c is given in Figure 1.6. 
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G(n = 10; m = 44) G(n = 10; m = 43) G(n = 10; m = 42) G(n = 10; m = 39) 

Figure 1.6. 

Figure 1.7. maxa(G) ; a(G) on m 

CONJECTURE 1.3 For all m 2 2 there is a graph G # Kn with maximum 
algebraic connectivity a(G) the complement of which is the disjoint 
union of triangles K3, paths P3, edges K2 and isolated vertices K1. 

Values of a(G) for all extremal graphs obtained by AGX are repre- 
sented in function of m in Figure 1.7. 

It appears that the maximum a(G) follow an increasing "staircase" 
with larger and larger steps. Values of a(G), m and n for the graphs of 
this staircase (or upper envelope) are listed in Table 1.2. 

An examination of Table 1.2 leads to the next conjecture. 



1 VNS for Extremal Graphs. XI. Bounds on Algebraic Connectivity 13 

Table 1.2. Value of a(G),  m and n for graphs, with maximum a(G) for m given, 
found by AGX 

CONJECTURE 1.4 For all n 2 4 there are n - 1 consecutive values of 
m (beginning at 3) for which a graph G # Kn with maximum algebraic 
connectivity a ( G )  has n vertices. Moreover, for the first [(n - 11/21 of 
them a ( G )  = n - 2 and for the last [(n - 1)/21 of them a ( G )  = n - 3.  

Considering the successive values of a ( G )  for increasing m, it appears 
that for a ( G )  = 2 onwards their multiplicities are 4, 4, 6, 6, 8, 8 , .  . . 
After a little fitting, this leads to the following observation: 

and to our final conjecture: 

CONJECTURE 1.5 I f  G is a connected graph such that G # Kn then 

and this bound is  sharp for all m 2 2. 

One can easily see that this conjecture improves the bound already 
given in Proposition 1.7, i.e., a ( G )  5 ( 2 m / ( n  - 1)) (n-1)ln 

4.2 Proofs 
We first prove Conjectures 1.3 and 1.4. Then, we present a proof for 

the last conjecture. The extremal graphs found point the way. 

Proof of Conjectures 1.3 and 1.4. From Propositions 1.6 and 1.8 if G # 
Kn, a ( G )  5 6 ( G )  5 n - 2. For this last bound to hold as an equality one 
must have 6 ( G )  = n - 2,  which implies G must contain all edges except 
up to Ln12J of them, i.e., n(n - 1 ) / 2  - [n /2J  < m 5 n(n - 1 ) / 2  - 1. 
Moreover, the missing edges of G (or edges of c) must form a matching. 
Assume there are 1 5 r 5 Ln/2] missing edges and that they form a 
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matching. Then from Merris (1994) det[L(E) -A I,] = - x ~ - ~ ~ x ~ ( x - ~ ) ~ .  
Hence 

((c) = (2,. . . ,2 ,0 , .  . . , O ) ,  ((G) = (n , .  . . , n , n  - 2,.  . . , n  - 2,O) - v- 
r times n-r-ltimes r t imes 

and a(G) = n - 2. If there are r > LnI2J missing edges in G, a(G) 5 
S(G) 5 n - 3. Several cases must be considered to show that this bound 
is sharp, in all of which r < n , as otherwise S(G) < n - 3. Moreover, 
one may assume r 5 n - 1 or otherwise there is a smaller n such that 
all edges can be used and with S(G) as large or larger: 

(i) r mod 3 = 0. Then there is a t E N such that r = 3t. Assume 
the missing edges of G form disjoint triangles in E .  Then (Biggs, 
1993) 

det[L(K3) - X 13] = X(X - 3)2 

and 
det[L(G) - X In] = (-X),-'Xt(X - 3)2t. 

Hence 

[(G) = (W,O,. . . ) O ) ,  

2t times 

n-2t-1 times 2t times 

and a(G) = n - 3. 
(ii) r mod 3 = 1. Then there is a t E N such that r = 3t + 1. Assume 

the missing edges of G form t disjoint triangles and a disjoint edge. 
Then, as above, 

and a(G) = n - 3. 
(iii) r mod 3 = 2. Then there is a t E N such that r = 3t + 2. Assume 

the missing edges of G form t disjoint triangles and a disjoint path 
P3 with 2 edges. From the characteristic polynominal of L(P3) and 
similar wguments as above one gets a(G) = n - 3. 0 

Proof of Conjecture 1.5. Let S # K, a graph with all edges except up 
to [n/2J of them. So, n(n - 1)/2 - Ln/2J < m 5 n(n - 1)/2 - 1. 

(i) If n is odd then, 
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Since n2 - 2 n  + 112 2 n(n - 2 ) / 2 ,  m > n(n - 2) /2 .  
(ii) If n is even, then 

So, 2 m  > n(n - 2)  and n - 2 < 1-1 + d-J. From Proposi- 
tion 1.6, a ( G )  5 n - 2. Then, a ( G )  < 1-1 + d-1. 

Now, consider (n  - l ) (n  - 2 ) / 2  < m < n(n - 1 ) / 2  - ( [ n / 2 J  + 1).  This 
way, m = n(n - 1 ) / 2  - r ,  with [n /2J  + 1 < r 5 n - 1. So, r 5 $(n  - 1) .  
We can add n2 to each side of the inequality above. After some algebraic 
manipulations, we get (n - 2)2  5 2 m  + 1. So, n - 3 5 -1 + d m .  

From the proof of Conjecture 1.4, we have a ( S )  < n - 3. Then, 
a ( S )  < 1-1 + J-1. AS we can consider every G # Kn with n 
vertices as a partial (spanning) graph of S ,  from Proposition 1.1 1, we 
then have a(G) 2 a ( S )  5 1-1 + 4-1. 
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