Computers & Operations Research (NNEN) REE-EER

Contents lists available at ScienceDirect

Computers & Operations Research

journal homepage: www.elsevier.com/locate/caor

ters.
& operations
research

A hybrid variable neighborhood tabu search heuristic for the vehicle
routing problem with multiple time windows

Slim Belhaiza **, Pierre Hansen P, Gilbert Laporte ¢

@ Department of Mathematics and Statistics, KFUPM, Dhahran 31261, Saudi Arabia

> GERAD, HEC Montréal, 3000 chemin de la Cote-Sainte-Catherine, Montréal, Canada H3T 2A7
€ CIRRELT and HEC Montréal, 3000 chemin de la Cote-Sainte-Catherine, Montréal, Canada H3T 2A7

ARTICLE INFO ABSTRACT

This paper presents a new hybrid variable neighborhood-tabu search heuristic for the Vehicle Routing

Keywords:

Variable neighborhood search
Tabu search

Vehicle routing problem
Multiple time windows

provided.

Problem with Multiple Time windows. It also proposes a minimum backward time slack algorithm
applicable to a multiple time windows environment. This algorithm records the minimum waiting time
and the minimum delay during route generation and adjusts the arrival and departure times backward.
The implementation of the proposed heuristic is compared to an ant colony heuristic on benchmark
instances involving multiple time windows. Computational results on newly generated instances are

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to present a new variable neigh-
borhood-tabu search heuristic for the Vehicle Routing Problem with
Multiple Time Windows (VRPMTW). The VRPMTW arises, for exam-
ple, in the delivery operations of furniture and electronic retailers,
where customers are sometimes offered a choice of delivery periods.
The problem also occurs in long-haul transportation (see e.g., Rancourt
et al. [15]). The VRPMTW has received relatively little attention in the
operations research literature. To our knowledge, it has only been
investigated by Favaretto et al. [7] who considered variants with single
or multiple visits. These authors have proposed an ant colony heuristic
for the problem. In contrast, several publications are available on the
related Traveling Salesman Problem [12,13], the Team Orienteering
Problem with Multiple Time Windows [21,19], and the Multi-Visits
Multi-interdependent Time Windows VRP [6]. In this paper we
describe a hybridized variable neighborhood-tabu search heuristic
for the VRPMTW. The proposed heuristic embeds the concept of
adaptive memory (Rochat and Taillard [16]), sometimes used in tabu
search (see also Bozkaya et al. [3]), into the standard variable
neighborhood search framework. The remainder of this paper is
organized as follows. The VRPMTW is formulated in Section 2. The
mathematical model is presented in Section 3. The heuristic is
described in Section 4. The route minimization algorithm is presented
in Section 5 followed by computational results in Section 6, and by
conclusions in Section 7.

* Corresponding author. Tel.: +966 38601054.
E-mail addresses: slim.belhaiza@gerad.ca, slimb@kfupm.edu.sa (S. Belhaiza),
pierre.hansen@gerad.ca (P. Hansen), gilbert.laporte@cirrelt.ca (G. Laporte).

0305-0548/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2013.08.010

2. Problem description

The VRPMTW is defined on a directed graph G = (V,A), where Vs
the vertex set and A is the arc set. The vertex set is partitioned into
V ={N, D}, where N = {1, ..., n} is a set of customers and D is a set of
depots. We consider a set R of vehicles and we denote by m the
number of vehicles. We denote by Qy the capacity of vehicle k, where
k e R. Every customer ie N has a non-negative demand g; a non-
negative service time s;, a set W; = ([l PLp=1,....p;} of p; time
windows. The travel time associated with arc (i,j) € A is denoted by
tj. We also denote by Dy, the maximum duration of the route of
vehicle k. Even if some of these features, such as multi-depots and
maximum duration, are exogenous to the VRPMTW context, we
think that providing a larger view of the problem can be helpful.

The aim of the VRPMTW is to design a set of m vehicle routes of
least total travel time or of least duration such that

(1) every customer is served once by one vehicle;

(2) the service of every customer starts within one of its time
windows; if the vehicle arrives before the beginning of the
time window, it must then wait;

(3) the total demand of a route does not exceed the vehicle
capacity;

(4) the total duration of a route assigned to a vehicle k cannot
exceed a preset upper bound Dy.

3. Mathematical programming formulation

The VRPMTW can be formulated as a 0-1 mixed integer linear
program, along the lines of Favaretto et al. [7]. We define in Table 1

Please cite this article as: Belhaiza S, et al. A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with
multiple time windows. Computers and Operations Research (2013), http://dx.doi.org/10.1016/j.cor.2013.08.010

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
mailto:slim.belhaiza@gerad.ca
mailto:slimb@kfupm.edu.sa
mailto:pierre.hansen@gerad.ca
mailto:gilbert.laporte@cirrelt.ca
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010

2 S. Belhaiza et al. / Computers & Operations Research § (AEEE) REE-EER

Table 1
Definition of the variables and parameters.

Variable Type Description
Xxl} Binary Equal to 1 if and only if arc (i, j) is traversed by vehicle k
J/:} Real Equal to the flow carried on arc (i, j)
* Binary Equal to 1 if and only if vehicle k is used
vP Binary Equal to 1 if and only if customer i is served within its time window p
wi Real Waiting time of vehicle k at customer i
z Binary Equal to 1 if and only if customer i is assigned to vehicle k
qd* Real Total demand loaded in vehicle k at depot d
dy Real Route duration of vehicle k
ak Real Arrival time of vehicle k at customer i
b:f Real Departure time of vehicle k from customer i
Parameter Type Description
t Real Travel time associated with the arc (i, j)
qi Real Demand associated with vertex customer i
I Real Time window p lower bound at customer i
uf Real Time window p upper bound at customer i
Qx Real Capacity of vehicle k
Dy Real Maximum duration of the route of vehicle k
Si Real Service time at customer i
ek Binary Equal to 1 if and only if vehicle k starts and ends at depot d
B Binary Equal to 1 if and only if total duration is to be minimized
F* Real Fixed cost in time units of using vehicle k
M Real Arbitrary large constant
the variables and the parameters used in our formulation. af»‘JrWﬁ‘ < uf +M(1 fz{-‘)+M(l fvf), ieN, peW;and keR, (16)
MM k k kok
minimize Y Y tyx;+BY > wi+ X F'r pi .
KeRizj | KeRIEN | KeRr > vwW=1, ieNnD, 17)
. . p=1
subject to Y ZK=1, ieV, 1
keT; X k X
r“>z{, ieV and keR, (18)
Yxi= Y xj. ieVandkeR,) .
jev’ jev v, wf, gl dy. daf. bf >0, (19)
k k k E— .
2xj<z{+z{, i jeVandkeR, (€)) k. xfj VP, Z¥ binary. (20)
k .
xi<1, ieV, 4 e .. .
keTz,:nT,» jezv v “ The objective is to minimize the total travel time, plus the total
waiting time multiplie e binary parameter B, plus the sum o
ting t Itiplied by the b ter B, plus th f
Sxk<1, iev (5) the fixed costs of the vehicles used. In order to convert the real
keT;nTjjeV ’ cost of using a vehicle to the same units used in the other parts of
the objective, the fixed cost F is expressed in time units.
y% < Qkxg,, i, jeVand keR, (6) Constraints (1) state that each customer is assigned to exactly
one vehicle. Constraints (2) state that each route of a vehicle k starts
Syk— S yk=qkek, deDand keR 7) and ends at the depot, and the number of arcs leaving a customer i
1 4 4
jev ey is equal to the number of arcs entering it. Constraints (3) mean that

any arc (i, j) can be traversed by vehicle k only if z* and zj" are both

Zy]’-‘,»f yszqizf‘, ieNand keR, €)) equal to 1. Constraints (4) and (5) force every customer i to be
jev o jev visited by one vehicle. Constraints (6) assert that the flow on arc
(i, j) is upper-bounded by the capacity Q, of the vehicle k traversing

bl >1lg—M(1-zk). deD and keR, (9) this arc. Constraints (7) ensure that the demand of the customers
visited by vehicle k is satisfied, while constraints (8) mean that the

af <ug+M(1-2z¥), deDand keR, (10) demand of each customer assigned to the route of a vehicle k is
satisfied. Constraints (9) ensure that the departure time of vehicle k

a’;-blé <Dy+M(1-2z¥), deDand keR, (11) from the depot d does not exceed I, and constraints (10) force the
arrival time of vehicle k at the depot d to be less than or equal to ug.

bf > af +w+5—M(1-2f), ieNandkeR, (12) Finally, constraints (11) mean that the total duration of each route
cannot exceed the maximum duration Dy.

aj]; - bf+cij—M(l —Xf-j-), i, jeV and keR, (13) Constraints (12) ensure that the departure time from customer
i is at least equal to the arrival time at customer i, plus the waiting

aj’-‘ < bf-‘+cij+M(1 —Xf-j-), i, jeVand keR, (14) time and the service time at customer i only if customer i is

assigned to vehicle k. Similarly, constraints (13) and (14) mean that
the arrival time at customer j is equal to the departure time from

kK wk > P_M(1=Z9—M1=vP), i)
@ +wi 2 [[-M(-z)-M(-v;), ieN, peW;andkeR, (15 customer i, plus the cost t;; of arc (i, j) only if this arc is assigned to

Please cite this article as: Belhaiza S, et al. A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with
multiple time windows. Computers and Operations Research (2013), http://dx.doi.org/10.1016/j.cor.2013.08.010

http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010

S. Belhaiza et al. /| Computers & Operations Research § (AEEN) REE-EER 3

vehicle k. Constraints (15) and (16) imply that the arrival time plus
the waiting time of vehicle k at customer i is within the time
window [, u] only if customer i is assigned to vehicle k and time
window p is chosen. Constraints (17) mean that exactly one single
time window is chosen for each customer i. Constraints (18)
ensure that customer i is served by vehicle k only if this vehicle
is used. Finally, constraints (19) and (20) state the feasibility
intervals for the decision variables.

This linear program is large and can be solved to optimality, in a
reasonable time, only for small instances. The use of heuristics is
therefore necessary for larger instances.

4. Description of the variable neighborhood heuristic

Variable Neighborhood Search (VNS) was introduced by
Mladenovi¢ and Hansen [10] as a generic local search methodology.
It has since been successfully applied to a variety of contexts,
including graph theory [2], packing problems [11] and location-
routing [9]. The basic idea of VNS is to apply a systematic change of
neighborhoods within a local search. In our implementation of VNS,
we consider a number of different neighborhood structures instead
of a single one, as is the case of many local search implementations.
Neighborhood changes are applied during both a descent (improv-
ing) phase and an exploration phase to move out of local optima. In
our implementation we allow infeasible solutions during the opti-
mization process if these offer a good balance between feasibility and
penalized costs.

Table 2 defines several control parameters used in our imple-
mentation. As for other penalties defined in this paper, these
parameters are set to static values during the solution process. In
Appendix B, we report the results of the parameters calibration
and the best values found during our experiments. All time
windows constraints, capacity constraints and maximum duration
constraints can be violated if weighted penalties are added to the
objective function. Since penalties weight could become very
large, this is usually not a good idea. However, our computational
results show that our implementation does not suffer from this.

We define V as the set of vertices with violated time windows
constraints. If i e Vg, the penalty is multiplied by the minimum of
the absolute values of the differences between the arrival time q;
at customer i and the bounds of each time window p e W;, raised
to the power §. For the capacity and duration constraints, the
penalty multiplies the maximum between zero and the difference
between the two sides of the constraint, raised to the power 6. The
total cost of a solution s is then

fO=co)+a min (la—PL -’ +f 3 max(0,(q—Q0)°
peW; ieVy k=1

+x ¥ max(0, (de—Dy))’,
keR
where dj, = ak—b* is the route duration of vehicle k.

Our VNS implementation consists of four main phases: (i) the
construction of an initial solution; (ii) a shaking phase with the
choice of the neighborhood structure and exchange operators; (iii)
a local search phase with different improving operators, and (iv) a
move-or-not-move phase.

4.1. Construction of an initial solution

During the initialization phase, the best customer to assign to a
vehicle is the one that induces the least increase in total route
duration. Since this could generate a set of routes not serving all
customers, the unrouted customers are inserted during the shak-
ing phase or during the local search phase. Our experiments have

Table 2
Definition of the heuristic parameters.

Parameter Definition

a Penalty on time window constraint

B Penalty on vehicle capacity constraint

X Penalty on maximum duration constraint
B} Penalty power

shown that all customers are served in feasible routes within a
reasonable number of iterations.

Our implementation of the VNS can also be described as a
sequence of two components: a stochastic component which con-
sists of the randomized selection of a neighborhood structure
during the shaking phase, and a deterministic component which
consists of the application of local search operators during each
iteration of the descent phase.

4.2. Shaking phase

The shaking procedure is called whenever no improvement in the
current solution has been made after a preset number of iterations.
We define a set of neighborhoods structures Ny(k =1, ..., Kjnax) from
which we randomly choose one neighborhood «, even if exploring
this neighborhood would increase the current cost of the solution. To
define the set of neighborhoods we must achieve a good balance
between the need to perturb the current solution and the need to
maintain some part of it. Another difficulty is to choose between
neighborhoods leading to infeasible and feasible solutions when the
number of feasible solutions is limited. Furthermore, we need to
define neighborhoods of different sizes.

Hence, the length of the segments which are moved or
exchanged is sometimes constrained and can be arbitrarily long.
Such moves or exchanges are performed once or several times in a
row depending on their complexity. If these shaking steps are not
sufficient to escape from local optima, a restart option is needed.
Hence, we consider that after a certain number Bp of iterations
there is a need to recenter the local search around one of the best
solutions previously found. Therefore, a list of best solutions with
constant size Nb is recorded and used during the computations.

Taillard et al. [20] have proposed the cross-exchange operator
with the idea of exchanging two segments from two different
routes. This operator is applied to every pair of non-empty routes.
It was later modified by Brdysy [4] in such a way that the
orientation of each segment changes after being inserted into
its new route. This defines the I-cross operator applied during the
shaking phase to every pair of non-empty routes. In addition to
these two neighborhoods, we also use two simple operators: the
exchange of a pair of customers within a single route, and the
exchange of a pair of customers between two routes (swap).

We also use a more sophisticated neighborhood structure which
consists of exchanging two sequences (possibly of different lengths)
of customers between two routes. One of the two sequences is
randomly chosen to be inverted. This cross-operator with random
inversion is applied to every pair of non-empty routes.

Our set of neighborhood structures in the VNS is not divided into
parts as in Polacek et al. [14] who consider routes belonging to the
same depot alongside routes belonging to different depots. Instead,
we consider that all neighborhood structures have the same
probability of being selected. Computational experiments per-
formed during the development of our heuristic led to this choice.

4.3. Local search phase

The solution obtained after the shaking phase is submitted to
the local search phase. In this phase we distinguish between two

Please cite this article as: Belhaiza S, et al. A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with
multiple time windows. Computers and Operations Research (2013), http://dx.doi.org/10.1016/j.cor.2013.08.010

http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010

4 S. Belhaiza et al. /| Computers & Operations Research § (AEEN) REE-EER

subphases: (i) a single-route improvement subphase where each
single route is improved by applying customer exchange opera-
tors; (ii) a multi-route improvement subphase where inter-route
exchange operators are applied to different sets of routes to
improve the solution. We use a first-improvement acceptance
policy during the local search.

4.3.1. Single-route improvement

During the single-route improvement subphase, different single-
route exchange operators are applied to each route. To accept such
insertions or moves, the cost of the route should decrease. The
operators are applied in an increasing order of complexity. We first
apply the relocate operator. We attempt to move one customer up
in a route, and we then try to move one customer down. Moving
one customer up consists of randomly choosing a customer and
trying to insert it in a randomly chosen position between two
customers preceding it in the route. Moving one customer down
consists of randomly choosing a customer and trying to insert it in a
randomly chosen position between two customers following it in
the route. When no improvement is obtained by the first operator,
we apply a second single-route operator which consists of exchan-
ging the positions of two customers inside a route. Fig. 1 shows how
the positions of customers i and j are exchanged in route k. When
no improvement is obtained by the second operator we apply a
third single-route operator which consists of inverting a sequence
of customers within a route. Fig. 2 shows how the sequence of
customers from i to j is inverted in route k.

4.3.2. Multi-route improvement

During the multi-route improvement phase, several inter-route
exchange operators are applied to a set of routes. Here, an improve-
ment is defined as a decrease in the current solution total cost while
a set of “tabu” structures is avoided (see Section 4.4). We first try to
move one customer from each route by placing it in a second route
(relocate). Fig. 3 shows how customer i is moved from route k to
route k' and placed before customer i’. When no improvement is
obtained by the first operator, we try to exchange a pair of customers
between each pair of routes (swap). Again, when no improvement is
obtained by the second operator, we try to exchange a pair of
segments between each pair of routes (cross). When no improve-
ment is obtained by the third operator, we try to exchange three
customers between a triplet of routes (3-node swap). Fig. 4 shows
how customer i is moved from route k to route k”, how customer i’ is
moved from route k’ to route k, and how customer i” is moved from
route k” to route k'. If no improvement is obtained by this fourth
operator, we try to exchange sequences of customers between each
pair of routes (cross). Finally, when no improvement is obtained by
the fifth operator we try to exchange three segments between a
triplet of routes. Fig. 5 shows how the segment (i) is moved from
route k to route k”, segment (i’,j) is moved from route k’ to route k
and segment (i”,j”) is moved from route k” to route k'.

Fig. 2. Sequence invert operator.

Fig. 5. 3-exchange operator.

4.4. Move-or-not-move phase

Archetti et al. [1] have used tabu search within VNS to solve the
team orienteering problem. In their implementation, only feasible
solutions are visited. Their tabu list is short and consists of a set of
moves associated to routes. In our case, our tabu list consists of a
set of solution structures. A list of tabu solution structures Ly is
maintained to ensure that the solution obtained does not belong
to the last set of solution structures recently explored. The tabu list
size is a parameter preset to a reasonable value to avoid wasting
too much time or using too much memory. We define a solution
structure ¢, as the set of attributes B(s) associated with a solution
s, such that B(s) = {(i, k) : z§‘= 1}. During the local search phase,
any move that generates a solution s with a structure ¢ € Ly is
rejected, even if it decreases the current solution cost during the
multi-route improvement phase. The solution s would be accepted
only if it decreases the best solution cost. The idea of maintaining a
list of tabu moves or solutions is largely inspired by the tabu
search metaheuristic.

The steps of the Hybrid Variable Neighborhood Tabu Search
(HVNTS) heuristic are described in Algorithm 1. We define [, S, L,
and G, respectively, as the set of insertion operators, shaking
operators, single-route operators and multi-route operators to be
applied to a solution s. We also represent the stopping condition
by STOP and the shaking condition by SHAKE. The stopping
condition refers to a maximum number of iterations, or to a
maximum amount of time, or to a maximum number of iterations
without improvement of the best solution.

Algorithm 1. HVNTS heuristic.

Step 1. Initialization
S,
S<sg<I(s);
ng«ns,; the number of customers served by sg
s*«sp; initialize the best solution
go to step 2;

Please cite this article as: Belhaiza S, et al. A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with
multiple time windows. Computers and Operations Research (2013), http://dx.doi.org/10.1016/j.cor.2013.08.010

http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010

S. Belhaiza et al. /| Computers & Operations Research (AEEN) REE-EER 5

Step 2. Shaking
generate k € N,;
s<5S«(s), go to step 3.a;

Step 3. Local search
Step 3.a
if c(s) < c(s*), then s*<s;
if ng < n, then s<I(s), go to step 3.b;
Step 3.b
s'<L(s);
if c(s’) < c(s), then s<s’, repeat step 3.b;
else go to step 3.c;
Step 3.c
s'<G(s);
if (c(s") < c(s*)) or (c(s) < c(s) & B(s)¢Lyp), then

s«<s’, add B(s) to L, go to step 3.a;

else if STOP=true then go to step 4;
else if SHAKE=true then go to step 2;
else repeat step 3.c;

Step 4;
if c(s) < c(s*) then s*«s, return s*,

5. Minimizing route duration

Once a route's order is obtained, it is often possible to delay the
departure time from the depot without violating the time windows
constraints of customers, which can reduce the total route duration.
Some infeasible routes can also become feasible. Savelsbergh [17] has
introduced the concept of forward time slack to postpone the
beginning of service at a given customer. Cordeau et al. [5] have
used this concept to improve their results on multi-depot and other
VRPTW instances with maximum duration significantly shorter than
the planning horizon given by the depot opening hours. While it
computes the forward time slack at each customer after a route is
generated, Salvelsbergh's procedure seems not to be extendable to
the case of multiple time windows. Tricoire et al. [21] proposed an
exact procedure to minimize route duration for the team orienteer-
ing problem with multiple time windows. This procedure integrates
the travel times into the service times at customers and performs a

of departure times. Tricoire et al. prove that their algorithm returns
the minimum duration solution in polynomial time under the
following assumptions: time windows at customers are not allowed
to overlap, and the triangular inequality holds for the travel time
matrix.

5.1. Minimum backward time slack algorithm

Independently of Tricoire et al.'s algorithm, we have developed
an alternative algorithm that records the minimum waiting time
and the minimum delay during route generation and adjusts the
arrival times backward during their computation. Appendix A
details the procedures to be implemented to complete the “Mini-
mum Backward Time Slack Algorithm”. The parameters to be used
by the algorithm are detailed in Table 3. The time arrival delay at
customer i, denoted by 6;, is the amount of time by which the
arrival time at customer i could be delayed without violating at
least one of its time window constraints. Algorithm 2 initializes
the arrival times for a given route such that a; = a;_1+5Si_1 +ti_1;,
using ap = lp as the time departure from the depot. Then, for every
time window p at customer i, Algorithm 3 computes a time delay
window [A} ,y¥1 which represents the lower and upper bounds on
the time delay that could be added to a given arrival time a; to
ensure feasibility of the time window p. Hence, 47 =PF—q; and
7P = uP—a;. We assume that all time delay windows at customer i
are ordered from earliest to latest A7

In order to enumerate all possibilities, Algorithm 4 initializes w
to 10 000 and all time delays to 0, and calls the Minimum Backward
Time Slack Main Procedure GetWait() (Algorithm 5). The total
waiting time found by GetWait() is compared to w, the best total
waiting time recorded. If an improvement is obtained, the best
time delays 6; are updated (Algorithm 6). In the case where w =0,
the enumeration is stopped since no better solution can be
obtained. Finally, the arrival times are updated by adding to each
a; the corresponding best time delay obtained.

Table 4
Time windows and time delay windows.

.)) . - Node plul] [2,u2] 5, u3] Wl (2.7
preprocessing to tighten time windows and eliminate useless ones. c o o o o o
The preprocessing evaluates the feasibility of a route with respect to 0 (0,1000) (0,1000)
the time windows constraints only. Then, the algorithm proceeds by 1 (10,20) (40,50) (100,110) (0,10) (30,40) (90,100)
enumerating all interesting solutions from earliest to latest and ; (28’ gg) (;305(1)30) 120,130 (gg’ ig) (;806(1)10) 9,100
keeping track of the best one. To do so, Tricoire et al. use the concept 2 290’ 1 02)) El 40 1)50) (120,130) 250’ 60; 21 00 1)10) (90.100)
of dominant solution, where a solution is defined as a feasible vector ' ' ' '

Table 3
Minimum delay parameters.
Parameter Definition
a; Arrival time at customer i
S Service time of customer i
0 Vector of delay of time arrivals at customers
0; Delay of time arrival at customer i
0; Best delay of time arrival at customer i
4 Equal to 0 —¢; if 2 > 6;
w Current total waiting time on the route
w Best total waiting time on the route
tiiv1 Travel time from i to i+1
n Number of customers in route
1P Time window p lower bound at customer i
uf Time window p upper bound at customer i
Vs Lower bound on delay to time window p of player i
yf Upper bound on delay to time window p of player i
Vi Equal to 1 if and only if customer i is served within one of its time windows
p Maximum possible delay of the customers in the preceding sequence of a route

Please cite this article as: Belhaiza S, et al. A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with
multiple time windows. Computers and Operations Research (2013), http://dx.doi.org/10.1016/j.cor.2013.08.010

http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010

6 S. Belhaiza et al. /| Computers & Operations Research § (AEEN) REE-EER

Our algorithm enumerates all maximal allowable time window 0;_,. While p<p;, if some waiting time z=A"—0; is to be

delays on a given route and guarantees that the total waiting time generated at customer i, all preceding arrival times can be delayed
is minimized by iteratively updating the arrival times at all by min{z, p}. In such a situation, two cases have to be considered.
customers. To do so, for every customer i with p; time windows, In the first case where p < 7, the modification index j would stop at

(i=1,...,n) in a route, the delay of time arrival &; is initialized at

Table 7
Results on the modified instances of Fisher, B=0, Set 1 and Set 2.
Table 5
Trace of duration minimization algorithm. Instance Best R. Avg. Gap % Instance BestR. Avg. Gap %
i -0 pt —op p<t W p=t 0 p— FO1 613.97 613.97 0.00 F29 991.54 991.54 0.00
FO2 613.97 613.97 0.00 F30 991.54 991.54 0.00
1 [0,0,0,0] 1 0 10000 No O Yes [0,0,0,0] 10 FO3 613.97 61397 0.00 F31 991.54 991.54 0.00
[0,0,0,0] 2 30 10000 No O Yes [30,0,0,0] 10 Fo4 613.97 613.97 0.00 F32 991.54 991.54 0.00
[0,0,0,0] 3 90 10000 No O Yes [90,0,0,0] 10 FO5 613.97 61397 0.00 F33 991.54 991.54 0.00
2 [0.0,0,0] 1 50 10 Yes 40 No [10,50,0,0] 0 FO6 613.97 61397 0.00 F34 991.54 991.54 0.00
[30.0.0.0] 1 20 10 Yes 10 No [40.50.0.0] 0 FO7 613.97 613.97 0.00 F35 991.54 99154 0.00
©0.0.001 1 - - - < - - RS o7 6122 020 F ao1ss s91s4 000
[90.0.0.0] 21010 No 0 Yes [100.100.0.0] 0 F10 61397 61397 000 F38 99154 99154 0.00
3 [10,50,0,0] 1 - - - - - - - F11 613.97 617.34 055 F39 991.54 991.54 0.00
[40,50,0,0] 1 - - - - - - - F12 613.97 617.34 0.55 F40 991.54 991.54 0.00
[100,100,0,0] 1 - - - - - - - F13 613.97 61435 0.06 F41 991.54 991.54 0.00
[10,50,0,0] 20 O No 40 Yes [10,50,50,0] 0 F14 613.97 61435 0.06 F42 991.54 991.54 0.00
[40,50,0,0] 20 O No 10 Yes [40,50,50,0] 0 F15 613.97 617.34 0.55 F43 991.54 99154 0.00
[100,100,0,0] 2 - - - - - - - F16 613.97 61435 0.06 F44 991.54 991.54 0.00
[10,50,0,0] 340 0 Yes 80 No [10,50,90,0] 0 F17 613.97 61435 0.06 F45 991.54 991.54 0.00
[40,50,0,0] 3 40 0 Yes 50 No [40,50,90,0] 0 F18 613.97 61435 0.06 F46 991.54 991.54 0.00
[100,100,0,0] 3 -0 - 0 - [100, 100, 100, 0] 0 F19 613.97 613.97 0.00 F47 991.54 991.54 0.00
im0 100 N me pomsos o B0 SBY s se o s s o
[40, 50, 50, 0] 10 0 No 10 Yes [40,50,50,50] 0 § i . : ’ :
[10.50,90.0] . B B o . ~ F22 613.97 61435 0.06 F50 991.54 991.54 0.00
M0.50.90.01 1 - - - - - _ B F23 61700 62105 066 F51 99154 991.54 0.00
[1065 1607 ‘1007 o1 - B B o B B F24 613.97 613.97 0.00 F52 991.54 991.54 0.00
[10,50,50,0] 2 50 0 Yes 90 No [10,50,50,100] 0 F25 613.97 61435 0.06 F53 991.54 991.54 0.00
[40.50.50.0] 250 0 Yes 60 No [40.50.50,100] 0 F26 613.97 617.07 0.51 F54 991.54 991.54 0.00
F27 61458 614.58 0.00 F55 991.54 991.54 0.00
[10,50,90.00 2 10 0 Yes 90 No [10,50,90,100] 0 F28 61458 61458 000 F56 99154 99154 0.00
[40, 50,90, 0] 2 10 0 Yes 60 No [40,50,90,100] 0
[100,100,100,0] 2 0 O - 0 - [100,100,100,100] O Average 614.12 61490 0.3 Average 991.54 99154 0.00

Table 6
Results on Favaretto et al.'s instances, B=1, Set 1 and Set 2.

Instance Best NP. Best R. Avg. Gap % vs FMP % Time Instance Best NP. Best R. Avg. Gap % vs FMP % Time
PO1 630.303 614 614 0 —23.94 18.5 P29 1021.88 1021.88 1021.88 0 —18.41 35
P02 624.045 614 614 0 —18.40 232 P30 1052.67 1035.57 1036.07 0.05 —1.88 9.9
P03 630.992 615.71 615.71 0 —18.08 64 P31 1047.44 1047.43 1047.43 0 338 5.4
P04 634.062 618.35 618.35 0 —-11.91 358 P32 1054.57 1052.28 1052.28 0 —2.73 7.8
P05 620.686 614 614 0 -31.43 64.9 P33 1044.4 1040.08 1040.08 0 —6.82 5.7
P06 622.304 614 614 0 —25.41 89.2 P34 1155.01 1060.49 1060.49 0 —12.59 10.3
P07 661.269 643.9 645.21 0 —23.93 70.2 P35 1050.15 1049.67 1049.77 0.01 —2.32 8.9
P08 654.97 643.88 646.12 0.2 —14.29 729 P36 1065.71 1050.02 1050.56 0 —13.18 8.7
P09 655.138 648.54 651.68 0.35 —35.38 70.3 P37 1035.1 1029.08 1029.08 0 —20.01 134
P10 623.092 614.45 617.46 0.48 —47.28 64.9 P38 1028.02 1017.42 1018.81 0.14 —30.43 19.8
P11 626.827 614 615.55 0.49 —31.60 65.1 P39 1152.41 1046.69 1046.69 0 2.84 13.9
P12 653.51 637.05 641.43 0.25 —38.61 819 P40 1203.74 1048.74 1049.05 0.03 —27.01 7.9
P13 680.978 657.38 660.03 0.69 —35.23 167.8 P41 1093.79 1061.94 1065.39 0.32 —16.58 19.3
P14 699.628 665.28 667.42 0.4 —33.03 172.2 P42 1132.35 1036.15 1036.15 0 —32.99 15.1
P15 673.589 645.96 646.39 0.32 —30.35 71.7 P43 1156.03 1053.1 1053.1 0 —11.48 14.1
P16 676.313 656.13 658.64 0.07 —39.00 148.8 P44 1191.63 1039.02 1041.39 0.23 —27.33 16.9
P17 681.825 658.78 659.12 0.38 —22.25 165.3 P45 1136.57 1092.13 1095.24 0.28 —3.10 15.6
P18 667.855 656.79 662.78 0.05 —27.70 204.3 P46 1069.93 1068.78 1068.79 0 —26.41 14.2
P19 710.188 674.68 677.35 0.4 -19.17 158.7 P47 1117.82 1049.93 1051.99 0.2 -31.72 141
P20 683.102 665.53 666.89 0.2 —29.07 89.8 P48 1084.88 1059.91 1061.27 0.13 —12.18 29.6
P21 660.782 638.3 642.64 0.68 —35.67 146.9 P49 1064.38 1020.46 1022.15 0.17 —9.46 234
P22 667.411 645.71 649.54 0.59 -31.33 1249 P50 1010.89 998.43 998.43 0 —23.89 28.2
P23 652.672 631.72 634.16 0.39 —34.87 181.6 P51 1113.43 998.43 998.49 0.01 —-8.07 248
P24 655.894 630.67 633.42 0.44 —39.69 137.2 P52 1130.49 1004.83 1007.2 0.24 —16.54 36.2
P25 681.019 651.72 654.17 0.38 —29.04 197.4 P53 1118.63 1029.54 1032.8 0.32 —36.37 284
P26 715.294 645.2 648.23 0.47 —27.51 274.9 P54 1103.91 1079.6 1084.25 043 -17.17 63.3
P27 765.886 667.94 670.13 033 —25.32 194.2 P55 1203.05 1021.08 1022.36 0.13 —-11.25 70.9
P28 702.956 664.06 665.89 0.28 —13.04 1335 P56 1218.97 1016.73 1018.94 0.22 -23.93 78.6
Average 664.74 640.99 643.01 0.31 —28.31 117.5 Average 1102.07 1040.35 1041.43 0.10 —15.63 21.7

Please cite this article as: Belhaiza S, et al. A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with
multiple time windows. Computers and Operations Research (2013), http://dx.doi.org/10.1016/j.cor.2013.08.010

http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010

S. Belhaiza et al. /| Computers & Operations Research | (AEEN) REE-EER 7

i—1 as the time delays are updated such that 6;=60;+p. The
waiting time at customer i is then reduced to 7 = 7—p, the current
total waiting time on the route is updated to w = w+7, the delay
0; is set to AY, p is set to 0, and v; is set to 1. The index p is set to
pi+1 because the duration of the route would be less than any
other duration obtained with a higher 7, as we will show later in
the proof of Proposition 1. In the second case where p >z, the
modification index j would stop at i as the time delays are updated
such that 6; = ;+7. The waiting time at customer i is reduced to 0,
the current total waiting time on the route remains constant, p is
updated to p = min{p—7, y{?—Gi}, and v; is set to 1.

If A <6; <77, p is updated to p = min{p, y? —6;}, and v; is set to 1.
If 0; > y?, then p = p+1. After all customers have been processed, if
v;=0 for some customer i, then the weighted time window penalty is
added to w. If w improves w, the best time delays and the best total
waiting time are updated (Algorithm 6). A more formal proof is
provided in Appendix A. In the first part of the proof, we show how
the choices made by the algorithm yield the least possible route
duration if 0; <A? initially, and the generated waiting time at
customer i is 7. In the second part of the proof, we show how the
algorithm does not need to explore all possibilities if p < 7P < 79, for
some time window q # p. In the third part and the conclusion of the
proof, we detail the simple cases where ¥ <6; < 7P or 6; > y? and
conclude on the complexity of the algorithm. We also prove that the
proposed procedure returns the route with minimum duration in
O(IT}_ 4py) time.

Table 8
Characteristics of the new VRPMTW instances.

5.2. Example

Our algorithm is now illustrated on a route visiting four
customers with multiple time windows. The travel time on each
one of the visited arcs is 10 time units. The service time at each
one of the customers is 0. Initially, the following arrival times are
obtained: ap =0, a; =10, a; =20, a3 = 30, a4 = 40. The computed
time delay windows are detailed in Table 4.

The algorithm starts first with 8, =0, p =10 000, w = 10 000
and w=0. With i=1, we get 6,«<0, and for p=1, we get
/1} <6, <yl. Therefore, p<10 and v; 1. With i=2, we get §,<0,
and for p=1, we get 6, < /1;. Hence, 7+50. Since p < 7, we update
60«10 and 0;+10. We also get w40, 8, = 50 and p<0. Now we
get A; <6, <yl. Therefore, p<0 and v,<1. With i=3, we get
65<50, and for p=1, we get 63 >yl. Then, for p=2, we get
/1§ < 05 <y3. Therefore, p<0 and v;«1. With i=4, we get 450,
and for p=1, we get /131 < 64 <yl.Therefore, p—0 and v4<1. Hence,
w=10 is returned and w+«10 is recorded. Table 5 summarizes the
trace of algorithm on this example. A route with minimum
duration equal to 50 and total waiting time w =0 is obtained.
The first column “i” indicates the customer being processed. The
second column “—@” details the entries of the vector 6 at the
beginning of the iteration. The third column “p” indicates the
index of the time window considered in the iteration. The fourth
column “z” indicates the value of 7, if it is available. The fifth
column “— p” indicates the entering value of p. The sixth column

Instance P P d d w w Instance p D d d w w

pr101 1 4 50 150 30 50 pr201 2 6 50 500 50 100
pri102 2 4 70 120 20 40 pr202 2 5 50 700 50 100
pr103 3 4 50 70 20 40 pr203 1 4 50 1000 50 100
pri04 3 6 30 50 10 30 pr204 1 3 100 1000 100 200
pcl01 2 6 50 200 50 100 pc201 1 3 1000 2000 400 500
pc102 2 6 50 200 100 200 pc202 1 4 1000 1500 400 500
pcl103 1 5 100 300 100 200 pc203 2 4 700 1200 300 400
pcl104 1 4 100 500 100 500 pc204 2 5 600 1100 200 300
prc101 1 2 200 240 100 200 prc201 1 3 300 400 50 100
prc102 1 2 160 200 100 200 prc202 1 3 400 500 50 200
prc103 1 2 160 200 70 80 prc203 1 3 400 500 100 200
prc104 1 2 140 180 50 60 prc204 1 2 200 700 100 200
rm101 5 9 10 10 10 30 rm201 5 8 50 100 50 100
rm102 5 7 10 30 10 30 rm202 3 5 50 300 50 100
rm103 4 7 10 50 10 30 rm203 2 5 50 500 50 100
rm104 3 6 10 70 10 30 rm204 2 4 50 700 50 100
rm105 2 6 10 100 10 30 rm205 1 4 50 1000 50 100
rm106 2 3 50 100 30 50 rm206 1 3 100 1000 100 200
rm107 1 3 50 150 30 50 rm207 1 3 200 1000 100 200
rm108 1 2 100 200 50 100 rm208 1 5 500 1000 100 200
cm101 5 10 10 50 50 100 cm201 5 10 100 150 50 100
cm102 5 7 10 70 50 100 cm202 5 7 100 200 50 100
cm103 3 7 10 100 50 100 cm203 3 7 100 300 50 100
cm104 3 5 10 100 50 100 cm204 3 5 100 500 50 100
cm105 2 5 50 200 50 100 cm205 2 5 200 500 100 200
cm106 2 4 50 200 100 200 cm206 2 4 200 700 100 200
cm107 1 3 100 300 100 200 cm207 1 3 200 1000 100 300
cm108 1 3 100 500 100 500 cm208 1 3 500 1000 100 500
rcm101 5 10 10 30 10 30 rcm201 5 10 100 150 50 100
rcm102 5 7 10 30 10 50 rcm202 5 7 100 200 50 100
rcm103 3 7 10 50 10 50 rcm203 3 7 100 300 50 100
rcm104 3 5 10 50 10 50 rcm204 3 5 100 500 50 100
rcm105 2 5 10 70 10 70 rcm205 2 5 200 500 100 200
rcm106 2 4 30 70 30 70 rcm206 2 4 200 700 100 200
rcm107 1 3 30 100 30 70 rcm207 1 3 200 1000 100 300
rcm108 1 3 30 100 30 100 rcm208 1 3 500 1000 100 500

Please cite this article as: Belhaiza S, et al. A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with
multiple time windows. Computers and Operations Research (2013), http://dx.doi.org/10.1016/j.cor.2013.08.010

http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010

8 S. Belhaiza et al. /| Computers & Operations Research § (AEEN) REE-EER

“p <7” indicates if the entering value of p is less than 7 or no. The
seventh column “w” indicates the current value of the total
waiting time in the route. The eighth column “p > z” indicates if
the entering value of p is greater or equal to 7. The ninth column
60— details the entries of the vector 6 at the end of the iteration.
The last column “p —” indicates the exiting value p.

6. Computational results

This section presents our experimental results on benchmark
instances of the Vehicle Routing Problem with Multiple Time
Windows (VRPMTW) [7]. We report our best and average computa-
tional results on different sets of instances. Using a C+ + imple-
mentation, these experimental results were obtained under MS
Windows on workstations with 3.3 GHz Intel Core i5 vPro proces-
sors, and 3.2 GB RAM.

6.1. Results on the instances of Favaretto et al. and Fisher

Two sets (Set 1 and Set 2) of VRPMTW instances were
generated by Favaretto et al. [7]. These two sets respectively
contain 71 and 44 customers to be served by four vehicles starting
and ending their routes at the same depot. These two sets of
instances were generated using two VRP instances without time
windows solved to optimality by Fisher [8]. Each set of instances
consists of 28 VRP instances with single or multiple time windows.
Favaretto et al. used the solutions proven to be optimal by Fisher
[8] to generate for each customer one time window containing the
arrival time corresponding to the optimal solution.

Unfortunately, the Favaretto et al. instances contain some wrong
coordinates and demands compared to the original instances used by
Fisher. Therefore, we can only compare our results to those of
Favaretto et al. when the total duration time is to be minimized
(B=1). After correcting these mistakes, we compare our results to the
optimal solution found by Fisher when the total travel time is to be
minimized (B=0) with the same time windows as those used by
Favaretto et al.

In their instances, Favaretto et al. considered 92.42 units of fixed
cost per vehicle used for Set 1, and 68.015 units of fixed cost per
vehicle used for Set 2. The value of the best lower bound solution for
Set 1 instances (1-28) is 614. The value of the best lower bound
solution for Set 2 instances (29-56) is 991. For Fisher's modified
instances (with time windows constraints), the value of the best lower
bound solution for Set 1 instances (1-28) is 613.97. It includes 241.97
as the total travel time of the routes, and 93 units of fixed cost per
vehicle used. The value of the best lower bound solution for Set
2 instances (29-56) is 991.54. It includes 723.54 as the total duration of
the routes, and 67 units of fixed cost per vehicle used. For these two
sets of instances, the best lower bound solution is considered as the
minimum possible cost of the optimal solution without time windows
constraints. This means that for some instances the real optimal
solution cost could be larger than its best lower bound.

The computational experiments performed on the instances of
Favaretto et al. and on the modified instances of Fisher are
presented in Tables 6 and 7. The column “Instance” indicates the
name of the problem. The column “Best NP.” indicates the best
solution found by HVNTS, without the minimum backward slack
time procedure, on 10 randomly generated runs (25 000 itera-
tions). The column “Best R.” indicates the best solution found by
HVNTS on 10 randomly generated runs (25 000 iterations). The
column “Avg.” indicates the average solution found by HVNTS on
the 10 runs. The column “Gap %” indicates the average percentage
gap between the average and the best solution on the 10 runs. The
column “vs FMP %” indicates the gap in percentage between the
best solution found by HVNTS and the best solution reported by

Favaretto et al. The column “vs Ib %” indicates the percentage gap
between the best solution found by HVNTS and the best known
lower bound. Finally, the column “Time” indicates the average
time, in seconds, required for each run.

On the instances of Favaretto et al., for 10 consecutive randomly
generated runs our heuristic obtains an average solution equal to
643.01 on Set 1 and to 1041.43 on Set 2. The average best solution
obtained by HVNTS over all runs is 640.99 on Set 1 and 1040.35 on
Set 2. The HVNTS best solution value is on average —28.31% and
—15.63% from the best solution reported by Favaretto et al. [7].
These results also show that the minimum backward time slack
procedure helped decrease the average best solution value by
3.57% on the first set of instances and by 5.60% on the second set of
instances. The large gaps between the two methods performances
is due to the fact that, to the best of our knowledge, Favaretto et al.
did not use any algorithm to find the minimum route duration.
Favaretto et al. did not provide results for B=0.

On the modified instances of Fisher, for 10 consecutive ran-
domly generated runs, our heuristic obtains an average solution
equal to 614.90 on Set 1 and 991.54 on Set 2. The average best
solution obtained by HVNTS over all runs is 614.12 on Set 1 and
991.54 on Set 2. The HVNTS best solution values are on average
0.13% and 0.00% superior to the best known lower bound.

6.2. Results on new VRPMTW instances

We have used Solomon's [18] VRPTW instances to generate two
different types of new VRPMTW instances. For the sets of instances
PR1, PR2, PC1, PC2, PRC1 and PRC2, the best known solutions are

Table 9
Results on the new VRPMTW instances 1. B=1.

Instance m BKS Best R. Avg. Gap % Time vs BKS
pr101 9 3665.95 3665.95 3671.12 014 433 0.00
pr102 9 366595 3666.87 367241 0.15 474 0.03
pr103 9 3665.95 3666.02 367213 0.17 57.3 0.00
pr104 9 3665.95 366646 3673.15 0.18 884 0.01
Average 9 3665.95 3666.3 36722 016 591 0.04
pr201 2 3652.07 3652.07 3671.24 0.52 90.8 0.00
pr202 2 3652.07 3652.07 3670.24 0.49 88.7 0.00
pr203 2 3652.07 3652.07 3670.21 0.50 955 0.00
pr204 2 3652.07 3652.07 3671.12 0.2 989 0.00
Average 2 3652.07 3652.07 3670.70 0.51 93.5 0.00
pc101 10 118248 11824.8 11848.20 0.20 799 0.00
pc102 10 118248 11824.80 11859.00 0.29 64.6 0.00
pc103 10 118248 11829.14 11864.00 0.29 436 0.04
pc104 10 118248 11824.80 11858.80 0.29 39.8 0.00
Average 10 118248 118258 118575 027 56.9 0.01
pc201 3 11684.28 11684.28 1171740 0.28 76.2 0.00
pc202 3 11684.28 11684.28 1171820 0.29 73.6 0.00
pc203 3 11684.28 11684.28 1173550 0.44 846 0.00
pc204 3 11684.28 1169943 11803.40 0.89 988 0.13
Average 3 11684.28 11688.1 117436 048 833 0.03
prc101 9 3795.59 3800.19 380842 0.22 18.7 012
prc102 9 379559 379559 380340 0.21 21.7 0.00
prc103 9 3795.59 379559 381341 047 33.8 0.00
prc104 9 379559 379559 3811.25 041 344 0.00
Average 9 379559 3796.7 3809.1 0.33 272 0.06
prc201 2 3656.62 3656.62 3662.12 0.25 742 0.00
prc202 2 3656.62 3659.90 366425 0.12 71.7 0.09
prc203 2 3656.62 3656.62 3660.38 0.10 90.7 0.00
prc204 2 3656.62 3656.62 3656.62 0.00 70.7 0.00
Average 2 3656.62 3657.4 3660.8 0.09 76.8 0.02
Average 583 6379.9 6381.1 6402.3 031 66.1 0.02

Please cite this article as: Belhaiza S, et al. A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with
multiple time windows. Computers and Operations Research (2013), http://dx.doi.org/10.1016/j.cor.2013.08.010

http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010

S. Belhaiza et al. /| Computers & Operations Research § (AEEN) REE-EER 9

known. For the sets of instances RM1, RM2, CM1, CM2, RCM1 and
RCM2, the best known solutions are not known. Every new instance
contains 100 customers and belongs to one of twelve sets. Sets PR1,
PR2, RM1 and RM2 were generated from Solomon's instances sets R1
and R2. In these sets, customers are randomly and uniformly
distributed. Sets PC1, PC2, CM1 and CM2 were generated from
Solomon's instances sets C1 and C2. In these sets, customers are

Table 10
Results on the new VRPMTW instances II.

clustered. Sets PRC1, PRC2, RCM1 and RCM2 were generated from
Solomon's instances sets RC1 and RC2. These sets contain a mix of
uniformly distributed and clustered customers. The depot has a
narrow time window in instances of type 1 and a longer horizon in
instances of type 2.

Every newly generated instance can be described by means of
some parameters. Let p and p be the minimum and maximum

Instance m B=0 B=1

Best R. Avg. Gap % Time Best R. Avg. Gap % Time
rm101 10 2977.2 3005 0.93 66.4 4041.9 4072.9 0.77 88.1
rm102 9 2759.4 2759.4 0.00 57.8 3765.1 3765.1 0.77 98.3
rm103 9 2692.5 2710.5 0.67 47.2 3708.5 3736.5 0.76 90.2
rm104 9 2696.6 2719.2 0.84 73.9 3718.0 37229 0.13 80.3
rm105 9 2688.8 2711.0 0.82 84.1 3688.8 3716.9 0.76 64.6
rm106 9 2691.9 2691.9 0.00 75.2 3692.9 3743.7 1.37 41.2
rm107 9 2690.8 2714.7 0.48 43.6 3701.4 37141 0.34 45.8
rm108 9 27291 27291 0.00 53.2 37291 37291 0.00 431
Average 9.1 2740.8 2753.7 0.47 62.7 3755.7 3775.2 0.52 69
rm201 3 37114 3720.5 0.24 43 4808.2 4847.4 0.82 92.8
rm202 2 2698.1 2717.3 0.71 40.2 3739.0 3775.7 0.98 95.7
rm203 2 2686.1 2702 0.59 46.6 37103 37283 0.48 86.8
rm204 2 2680.5 2691.2 0.40 47.9 3691.9 3708.8 0.46 79
rm205 2 2671.0 2688.2 0.64 44.3 3689.9 3707.7 0.48 63.5
rm206 2 2686.3 2704.9 0.69 31.9 3703.4 37203 0.46 88.1
rm207 2 2678.2 2696.2 0.67 51.6 3701.7 3719.4 0.48 925
rm208 2 2673.9 2690.7 0.63 433 3682.8 3699.6 0.46 81.7
Average 21 2810.7 2826.4 0.57 43.6 3850.1 3876.9 0.58 85.0
cm101 10 3089.2 3102.4 0.43 102.3 12 320.0 12 344.4 0.20 96.2
cm102 12 3426.9 3426.9 0.00 96.8 124921 124921 0.00 96.8
cm103 12 3532.7 3572.7 113 90.7 12 641.2 12 687.7 0.37 725
cm104 14 4051.3 4058 0.17 69.2 13 087.8 13117.9 0.23 62.4
cm105 11 3060.6 3077.3 0.54 66.7 12 083.4 12144.4 0.50 61.4
cm106 10 2992.4 3020.2 0.93 65.3 12 073.9 121339 0.50 59.7
cm107 11 3256.5 32923 1.10 37.9 123242 12 364.1 0.32 394
cm108 10 2968.7 29731 0.15 31.5 11990.4 12 012.6 0.19 311
Average 109 3297.3 33154 0.56 70.0 12382.2 124121 0.29 64.9
cm201 5 4436.62 4452.5 0.36 91.9 13 520.1 13 591.7 0.53 96.3
cm202 4998.8 5024.9 0.52 90.2 14027.3 14 060.7 0.24 96.8
cm203 5 4445.8 4484.6 0.87 94.3 13497.2 13512.8 0.12 86.3
cm204 5 4335.2 43724 0.86 91.5 13359.8 13 413.7 0.40 87.3
cm205 4 3863.5 3883.2 0.51 99.4 12 884.1 12 963.1 0.61 86.9
cm206 4 3722 3743.2 0.57 84.1 12767.7 12811.2 0.39 933
cm207 4 3968.4 3977.8 0.24 60.1 13 009.7 13 017.6 0.06 833
cm208 4 37711 3793.2 0.59 64.9 127881 12 805.2 0.13 772
Average 4.6 4192.7 4216.5 0.56 84.6 13 231.0 13 272.0 0.31 884
rcm101 10 3062.0 3086.6 0.80 76.5 4098.92 4129.7 0.75 91.9
rcm102 10 3132.2 3142.3 0.32 60.1 4222.61 4228.4 0.14 56.1
rcm103 10 31529 3163.8 0.35 751 4174.25 4185.4 0.27 522
rcm104 10 3119.6 3134.6 0.48 63.8 4156.26 4170.7 0.35 65.8
rcm105 10 3187.9 3210.7 0.71 64.7 4216.65 4227.0 0.25 46.1
rcm106 10 3218.9 32189 0.00 54.7 4219.93 4236.3 0.39 46.2
rcm107 11 3488.9 3514.0 0.72 354 4542.38 4560.8 041 24.0
rcm108 11 3592.7 3592.7 0.00 35.6 4614.49 4614.5 0.00 36.6
Average 103 32444 32579 0.42 58.2 4280.7 42941 0.32 52.4
rcm201 2 2804.0 2827.8 0.85 69.2 3783.6 3824.5 1.08 72.9
rcm202 2 2836.9 2846.8 0.35 78.9 38471 3847.1 0.00 78.9
rcm203 2 27219 27254 0.13 92.2 37219 37254 0.09 92.2
rcm204 2 2726.5 27431 0.61 75.9 3726.5 3743.1 0.44 75.9
rcm205 2 2754.5 2775.7 0.77 71.7 3754.5 3775.7 0.56 71.7
rcm206 2 2812.7 2830.6 0.64 215 3812.7 3830.6 0.47 21.5
rcm207 3 3749.8 3786.8 0.99 67.9 4764.2 4792.2 0.59 61.4
rcm208 2 27914 2817.2 0.92 214 37914 3817.2 0.68 214
Average 21 2899.7 2919.2 0.66 62.3 3900.3 3919.5 0.49 62.0
Average 6.52 3197.9 3214.8 0.54 63.6 6897.5 6922.7 0.42 70.3

Please cite this article as: Belhaiza S, et al. A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with
multiple time windows. Computers and Operations Research (2013), http://dx.doi.org/10.1016/j.cor.2013.08.010

http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010

10 S. Belhaiza et al. / Computers & Operations Research § (AEEN) REE-EER

numbers of time windows for a customer, let d and d be the
minimum and maximum distance between two consecutive time
windows, and let w and w be the minimum and maximum
width of a time window for a customer. Table 8 summarizes the
characteristics of each instance.

The computational experiments performed on the new
VRPMTW instances are presented in Tables 9 and 10. Column
“m” indicates the number of vehicles used by the best solution. We
considered that the fixed cost per vehicle used should be propor-
tional to the capacity of the vehicle. Therefore, the fixed costs
considered are equal to 200, 1000, 200, 700, 200 and 1000,
respectively, for the sets of instances PR1, PR2, PC1, PC2, PRC1
and PRC2, and for the set of instances RM1, RM2, CM1, CM2, RCM1
and RCM2.

6.2.1. New instances with best known solutions

The best solutions, and most probably the optimal ones, were
obtained after relaxing the time windows constraints for the sets
of instances R1, R2, C1, C2, RC1 and RC2. We have used our
implementations of tabu search and our HVNTS heuristic to obtain
these best solutions. We then used these best solutions to generate
for each customer at least one time window containing its arrival
time in the best solution. These instances involve overlapping time
windows. The obtained instances define our first set of instances
PR1, PR2, PC1, PC2, PRC1 and PRC2. The computational experi-
ments performed on this first set of new VRPMTW instances are
presented in Table 9. Column “BKS” indicates the cost of the best
known and most probably optimal solution. Column “vs BKS™
indicates the gap between the best solution found by HVNTS and
the best known solution. The results in Table 9 show that the
HVNTS heuristic finds the best known solution on almost every set
of runs.

6.2.2. New instances without best known solutions

For the newly generated VRPMTW instances RM1, RM2, CM1,
CM2, RCM1 and RCM2, the average number of time windows
considered for each customer is larger than the average in the
previous set of instances. These instances do not involve over-
lapping time windows and the number of vehicles considered is
larger than the number of vehicles in the previous set. On these
newly generated instances, and for 10 consecutive randomly
generated runs, our heuristic obtains an average gap of 0.47%,
0.57%, 0.56%, 0.56%, 0.42% and 0.66%, respectively, for the sets of
instances RM1, RM2, CM1, CM2, RCM1 and RCM2, when B=0. The
average gap is 0.52%, 0.58%, 0.29%, 0.31%, 0.32% and 0.49%, for
these sets, when B=1. The overall average gap is 0.54%, when
B=0, and 0.42%, when B=1.

7. Conclusions

>We have presented a hybridization of the variable neighbor-
hood search metaheuristic using a tabu search memory concept in
order to solve the vehicle routing problem with multiple time
windows. The paper also described a minimum backward time
slack algorithm for this problem. The algorithm records the
minimum waiting time and the minimum delay during route
generation and adjusts the arrival and departure times backward
during their computation. While the procedure proposed by
Tricoire et al. [21] to minimize route duration for the team
orienteering problem with multiple time windows worked under
two assumptions (time windows at customers are not allowed
to overlap, and the triangular inequality holds for the travel
time matrix), our route minimization procedure only assumes
that all time delay windows at customer i are ordered from earliest
to latest AY. At this point, since Tricoire et al.'s procedure and

our procedure were applied to two different problems and
developed independently from each other, we cannot pretend
that one of the procedures is “better” than the other. However,
in our context, our procedure is applied to problems with
possibly overlapping time windows and with a larger number of
time windows, if compared to the context of Tricoire et al.'s
procedure. Tricoire et al.'s procedure was applied to problems
with at most two time windows per customer, while our proce-
dure was applied to problems with at most ten time windows per
customer.

The new algorithm outperforms the ant colony heuristic of
Favaretto et al. [7] on benchmark instances involving single and
multiple time windows. The HVNTS heuristic also obtains best
solution values very close to the best known lower bound. The
HVNTS heuristic results are stable on randomly generated con-
secutive runs. The average gap on Favaretto et al.'s instances is
0.31% and 0.10%. The average gap on the modified instances of
Fisher is around 0.13% and 0.00%. Finally, the average gap on the
newly generated VRPMTW instances is 0.54%, when B=0, and
0.31% and 0.42%, when B=1.

Acknowledgments

This work was partially supported by KFUPM Deanship of
research under Grant IN101038 and by the Canadian Natural
Sciences and Engineering Research Council under Grants 105574-
12 and 39682-10. This support is gratefully acknowledged. Thanks
are due to the referees for their valuable comments.

Appendix A

We now provide the details of the procedures to be implemen-
ted to complete the “Minimum Backward Time Slack Algorithm”.

Algorithm 2 initializes the arrival times.

Algorithm 3 computes the time delay windows.

Algorithm 4 sets the time arrivals.

Algorithm 5 details the main procedure.

Algorithm 6 records the best time delays and the best total
waiting time.

Algorithm 2. IntializeArrivalTimes().

ap=1lp

fori=1,...n:
Aj—0i 1+t 1i+S;

end for

return

Algorithm 3. ComputeDelayBounds().

fori=1,..n:
forp=1,...p;:
if (a; <u?) then
ifﬁ—lf—a,-
7P eul—a;
else
A ——1000
yP<—-1000
end if
end for
end for
return

Please cite this article as: Belhaiza S, et al. A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with
multiple time windows. Computers and Operations Research (2013), http://dx.doi.org/10.1016/j.cor.2013.08.010

http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010

Algorithm 4. SetArrivalTimes().

fori=1,...n:
0;<0
él‘(—O

end for

w<«10000

90(—0

GetWait(¢, 10000, 0, 1)

fori=0,...n+1:
a,«—a,-—}—é,»

end for

return

Algorithm 5. Minimum backward time slack main procedure:

GetWait(d, p, w, i).

if (W =0) then
return;
else if (i <n) then
0;0;_1;
p<T1;
while (p <p;) do
Vi<0;
if (0; <) then
T<—/1€—9,‘;
if (p <7) then
forj=0toi-1:
end for
WeW+T—p;
91' <—llp,
p<0;
vi<1;
p<pi+1;

GetWait(d, p, w, i+1);

else if (p > 7) then
forj=0toi:
9j<—6j+1’;
end for
pemin{p—z,y] —0;};
vi<1;

GetWait(0, p, w, i+1);

end if
else if (A <6; <y?) then
pemin{p,y;]—0i};
Vi<—1 5
GetWait(0, p, w, i+1);
else if (6; > y?) then
p<p+1;
end if
end while
else if (i > n) then
forj=1ton:
if (v; =0) then

. S
Wew+a ming . w, {16471, 10771}

end if
end for
if (w <w) then
UpdateBestDelays();
end if

S. Belhaiza et al. /| Computers & Operations Research § (AEEN) REE-EER 11

end if
return,;

Algorithm 6. UpdateBestDelays().

Oo—0:;
forj=1ton:

end for

en +1 ‘_en;
Wew;
return

Note that if a;>u?, then A and y are both set to a large
negative value (Algorithm 3). This would allow the main procedure
to skip this time window. Algorithm 4 initializes €y to 0 and calls
the procedure detailed in Algorithm 5. The total waiting time is
found by the main procedure GetWait() (Algorithm 5). This time is
compared to w, the best total waiting time recorded. If an
improvement is obtained, the best time delays 6; are updated
(Algorithm 6). In the case where w = 0, the enumeration is stopped
since no better solution can be obtained. Finally, the arrival times
are updated by adding to each g; the corresponding best time delay
obtained.

We now prove that the proposed “Minimum Backward Time
Slack Algorithm” returns the optimal solution to the minimum
duration problem with multiple time windows.

Proposition 1. The Minimum Backward Time Slack Algorithm finds
the optimal solution to the minimum duration problem with multiple
time windows.

Proof. The initial arrival times are computed regardless of the
time windows constraints. Hence, for each customer i in the route
we have

0,<..<b;<..<0,.

Thus, 6; is initialized to its lower bound 6;_;, before verifying the
feasibility of the time windows at customer i. We suppose that the
time delay windows at each customer are ordered from earliest to
latest lower bound. Therefore, the time delay 6; is compared to the
earliest encountered time delay window lower bound 7. In the
first part of the proof, we show that the choices made by the
algorithm yield the least possible route duration if 6; < A initially,
and the generated waiting time at customer i is z. In the second
part of the proof, we show that the algorithm does not need to
explore all possibilities if p < 7P < 79, for some time window q # p.
In the third part and the conclusion of the proof, we detail the
simple cases where A/ <0;<y? or §;>y! and conclude on the
complexity of the algorithm.

Part L. (9, < /1?)

In the case where p <7, the time delays of the preceding
customers in the route can be increased by any value € €0, p],
while the time delay 6; is updated to AF. If the time delays of
customers 1 to i—1 are increased by ¢, the duration of the
sequence of the route 1 to i is equal to A’ —(6 +¢) and larger than
the duration of the same sequence if € = p:

01+ = 01 +p).

This means that the new maximum delay of the sequence 1 to i
would be p,. = min{p—e,y?—A¥} which is larger than p =0 if e = p.
Moreover, the waiting time generated would be w.=7—€¢ and
larger than w=17—p. If p. =p—€, w, can be reduced by at most

Please cite this article as: Belhaiza S, et al. A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with
multiple time windows. Computers and Operations Research (2013), http://dx.doi.org/10.1016/j.cor.2013.08.010

http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010

12 S. Belhaiza et al. / Computers & Operations Research § (AEEN) REE-EER

p—e. Hence, we would always have
We > T—€—(p,) =T—p.

If p.=y?—A, we can be reduced by at most y’—A¢. Hence, we
would always have

We = 1—€6—(p,) =T—€—(P) = 1—€6—(p—€) = 7.

Therefore, if € <p is chosen, the duration of the sequence 1 to i
would always remain larger than the duration of the same
sequence if p was chosen. Hence, the choice of p is better than
any other choice if p <.

In the case where 7 <p, the time delays of the preceding
customers in the route can be increased by any value € ¢[0, 7],
while the time delay 6; is updated to A?. If the time delays of
customers 1 to i—1 are delayed by ¢, the duration of the sequence
of the route from 1 to i is equal to A’ —(0; +¢) and larger than the
duration of the same sequence if € = z:

A —01+e)= -0, +7).

This means that the new maximum delay of the sequence 1 to i
would be p, = min(p—e, y?—A") and larger than p = min{p—7,y’ -
APy, if e=t. Moreover, the waiting time generated would be
we =7—e€ and larger than w=0. If p. =p—¢€, w. can be reduced
by at most p—e. Hence, we would always have

We > T—€—(p,) =T—p.

If p.=y?—A¥, we can be reduced by at most y’—A¢. Hence, we
would always have

We > 7—€—(p.) =T—€—(y{ —A)) = 1—e—(p—€) =7—p > 0.

Therefore, if € <p is chosen, the duration of the sequence 1 to i
would always remain larger than the duration of the same
sequence if 7 was chosen. Hence, the choice of 7 is better than
any other choice if 7 < p. We can now conclude that the choices
made by the algorithm at every customer i such that 6; <A are
sequentially better than all other possible choices. Therefore, at

Table 11
Tests on Tabu list size |L,|. a =100, § =4, 25 K iterations.

i=n the algorithm finds all minimal route durations for all possible
combinations of time windows assigned to customers.

Part IL. (p <7P <179)

If p<7P <79 for some time delay window g +# p, as shown in
part I, the best choice for the time delays updating would make
the duration of the sequence of customers 1 to i such that
A —(01+p) < A} =01 +p), with waiting times generated at i such
that wP =77 —p < w9 = 19—p, respectively for time delay windows
p and q. Since p would become equal to O in both cases, the
minimum duration of the route if customer i was served within
the time window g would not be lower than the minimum
duration of the route obtained if customer i is served within the
time window p. Therefore, the algorithm should skip the next time
delay windows if p < 7.

Part IIl. (¥ <0; <y?) or (6; > yP)

Now, in the case where 2/ < 6; < 7P, p is updated to its maximum
possible value which is min{p, yf —0;}. At this stage, customer i is
served on its time window p with the least possible duration given
the entering values of the vector 6 and p. In the case where 6; is
strictly larger than the current y?, the time delay window p+1 is to
be explored.

The “Minimum Backward Time Slack Algorithm” finds the
optimal solution to the minimum duration problem with multiple
time windows.

Proposition 2. The complexity of the Minimum Backward Time
Slack Algorithm is O(TT!_ ,py)-

Proof. Since the time delay windows are ordered, the complexity
of the setting of 6; is O(p;) at each customer i with p; time windows.
Therefore, the complexity of the algorithm is O(TT"_ ;p)).

Appendix B

The following tables compile some of the results of the para-
meters calibration tests. Table 11 compares the results on a sample
of instances for different values of the tabu list size. Table 12
compares the results on a sample of instances for different values of
the penalty power.

Instance Lyl =0 Lyl =10 ILyl =50 |Ly| =100

Best R. Avg. Time Best R. Avg. Time Best R. Avg. Time Best R. Avg. Time
rm108 3759.7 37745 40.6 3753.6 3759.3 445 3761.1 3769.9 48.7 37291 37291 431
rm204 3705.2 3725.6 75.9 3695.6 3725.9 77.8 3696.1 37233 82.7 3691.9 3708.8 79.0
cm101 12 404.6 12 479.0 67 12 362.5 12 426.8 100.1 123384 12 402.6 74.2 123554 12398.9 94.8
cm205 12902.7 129774 101.5 12 903.4 129545 91.2 12919.5 12976.9 85.4 12 884.1 12963.1 86.9
rcm103 4180.3 4186.3 65.4 4176.8 4194.6 49.5 4178.2 4189.2 75.3 41743 4185.4 522
rcm206 3823.6 3840.1 26.6 3840.9 3853.8 39.7 3834.5 3845.8 328 3812.7 3830.6 215
Average 6796.0 6830.5 62.9 6788.8 6819.2 67.1 6787.9 6817.9 66.5 6774.6 6802.6 63.2

Table 12
Tests on penalty power 5. a =100, |L,| =100, 25 K iterations.

Instance §=05 s=1 5=2 s5=4

Best R. Avg. Time Best R. Avg. Time Best R. Avg. Time Best R. Avg. Time
rm108 37323 3747.2 49.2 3755.2 3766.2 472 3764.4 3778.2 42.6 37291 37291 431
rm204 3703.6 37314 99.5 3707.1 3723.8 84.6 37115 3726.9 94.5 3691.9 3708.8 79.01
cm101 12 344.0 123521 100.2 12 354.0 123725 97.8 12 320 123444 96.2 123554 12 398.9 94.8
cm205 12911.0 129722 112.7 12904.3 129593 1324 12 902.6 12 960.6 102.6 12884.1 12963.1 86.9
rcm103 4178.0 4192.2 67.1 4168.6 4179.8 60.9 4180.5 4186.2 57.6 41743 4185.4 52.2
rcm206 3852.7 3860.2 32.7 3850.7 3858.1 34.5 3812.7 38214 29 3812.7 3830.6 21.5
Average 6786.9 6809.2 76.9 6790.0 6809.9 76.2 6781.9 6802.9 70.4 6774.6 6802.6 63.2

Please cite this article as: Belhaiza S, et al. A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with
multiple time windows. Computers and Operations Research (2013), http://dx.doi.org/10.1016/j.cor.2013.08.010

http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010

S. Belhaiza et al. /| Computers & Operations Research B (AREE) RER-RER 13

References

[1] Archetti C, Hertz A, Speranza MG. Metaheuristics for the team orienteering
problem. Journal of Heuristics 2006;13:49-76.

[2] Belhaiza S, de Abreu NM, Hansen P, Oliveira CS. Variable neighborhood search
for extremal graphs XI. Bounds on algebraic connectivity. In: Avis D, Hertz A,
Marcotte O, editors. Graph theory and combinatorial optimization. New York:
Springer; 2005. p. 1-16.

[3] Bozkaya B, Erkut E, Laporte G. A tabu search algorithm and adaptive memory
procedure for political districting. European Journal of Operational Research
2003;144:12-26.

[4] Brdysy O. Fast local searches for the vehicle routing problems with time
windows. INFOR 2002;40:319-30.

[5] Cordeau J-F, Laporte G, Mercier A. Improved tabu search algorithm for the
handling of route duration constraints in vehicle routing problems with time
windows. Journal of the Operational Research Society 2004;55:542-6.

[6] Doerner KF, Gronalt M, Hartl RF, Kichele G, Riemann M. Exact and heuristic
algorithms for the vehicle routing problem with multiple interdependent time
windows. Computers & Operations Research 2008;35:3034-48.

[7] Favaretto D, Moretti E, Pellegrini P. Ant colony system for a VRP with multiple
time windows and multiple visits. Journal of Interdisciplinary Mathematics
2007;10:263-84.

[8] Fisher ML. Optimal solution of vehicle routing problems using minimum
K-Trees. Operations Research 1994;42:626-42.

[9] Jarboui B, Derbel H, Hanafi S, Mladenovi¢ N. Variable neighborhood search for
location routing. Computers & Operations Research 2013;40:47-57.

[10] Mladenovi¢ N, Hansen P. Variable neighborhood search. Computers & Opera-
tions Research 1997;24:1097-100.

[11] Mhallah R, Alkandari A, Mladenovi¢ N. Packing unit spheres into the smallest
sphere using VNS and NLP. Computers & Operations Research 2013;40:603-15.

[12] Pesant G, Gendreau M, Potvin J-Y. An exact constraint programming algorithm
for the traveling salesman problem with time windows. Transportation
Science 1998;32:12-29.

[13] Pesant G, Gendreau M, Potvin]-Y, Rousseau L-M. On the flexibility of
constraint programming models: from single to multiple time windows for
the traveling salesman problem. European Journal of Operational Research
1999;117:253-63.

[14] Polacek M, Hartl RF, Doerner KF. A variable neighborhood search for the multi
depot vehicle routing problem with time windows. Journal of Heuristics
2004;10:613-27.

[15] Rancourt M-E, Cordeau J-F, Laporte G. Long-haul vehicle routing and schedul-
ing with working hour rules. Transportation Science 2013;47:81-107.

[16] Rochat Y, Taillard E-D. Probabilistic diversification and intensification in local
search for vehicle routing. Journal of Heuristics 1995;1:147-67.

[17] Savelsbergh MWP. The vehicle routing problem with time windows: mini-
mizing route duration. ORSA Journal on Computing 1992;4:146-54.

[18] Solomon MM. Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations Research 1987;35:254-65.

[19] Souffriau W, Vansteenwegen P, Vanden Berghe G, van Oudheusden D. The
multiconstraint team orienteering problem with multiple time windows.
Transportation Science 2013;47:53-63.

[20] Taillard E-D, Badeau P, Gendreau M, Guertin F, Potvin J-Y. A tabu search
heuristic for the vehicle routing problem with soft time windows. Transporta-
tion Science 1997;31:170-86.

[21] Tricoire F, Romauch M, Doerner KF, Hartl RF. Heuristics for the multi-period
orienteering problem with multiple time windows. Computers & Operations
Research 2010;37:351-67.

Please cite this article as: Belhaiza S, et al. A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with
multiple time windows. Computers and Operations Research (2013), http://dx.doi.org/10.1016/j.cor.2013.08.010

http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref1
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref1
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref2
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref2
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref2
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref2
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref3
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref3
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref3
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref4
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref4
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref9
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref9
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref9
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref13
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref13
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref13
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref13
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref14
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref14
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref14
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref15
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref15
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref18
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref18
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref18
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref19
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref19
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref19
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref20
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref20
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref20
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref21
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref21
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref21
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref22
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref22
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref22
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref22
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref24
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref24
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref24
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref27
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref27
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref28
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref28
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref29
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref29
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref30
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref30
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref31
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref31
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref31
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref32
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref32
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref32
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref33
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref33
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref33
http://refhub.elsevier.com/S0305-0548(13)00216-5/sbref33
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010
http://dx.doi.org/10.1016/j.cor.2013.08.010

	A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows
	Introduction
	Problem description
	Mathematical programming formulation
	Description of the variable neighborhood heuristic
	Construction of an initial solution
	Shaking phase
	Local search phase
	Single-route improvement
	Multi-route improvement

	Move-or-not-move phase

	Minimizing route duration
	Minimum backward time slack algorithm
	Example

	Computational results
	Results on the instances of Favaretto et al. and Fisher
	Results on new VRPMTW instances
	New instances with best known solutions
	New instances without best known solutions

	Conclusions
	Acknowledgments
	References

