

Basic Business Statistics 11th Edition

Chapter 16

Time-Series Forecasting and Index Numbers

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-1

Learning Objectives

In this chapter, you learn:

- About different time-series forecasting models: moving averages, exponential smoothing, linear trend, quadratic trend, exponential trend, autoregressive models, and least squares models for seasonal data
- To choose the most appropriate time-series forecasting model
- About price indexes and differences between aggregated and unaggregated indexes

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc..

The Importance of Forecasting

- Governments forecast unemployment rates, interest rates, and expected revenues from income taxes for policy purposes
- Marketing executives forecast demand, sales, and consumer preferences for strategic planning
- College administrators forecast enrollments to plan for facilities and for faculty recruitment
- Retail stores forecast demand to control inventory levels, hire employees and provide training

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Time-Series Data

- Numerical data obtained at regular time intervals
- The time intervals can be annually, quarterly, monthly, weekly, daily, hourly, etc.
- Example:

Year:	2000	2001	2002	2003	2004
Sales:	75.3	74.2	78.5	79.7	80.2

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-5

Time-Series Plot

A time-series plot is a two-dimensional plot of time series data

- the vertical axis measures the variable of interest
- the horizontal axis corresponds to the time periods

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Cyclical Component

- Long-term wave-like patterns
- Regularly occur but may vary in length
- Often measured peak to peak or trough to trough

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-11

Irregular Component

- Unpredictable, random, "residual" fluctuations
- Due to random variations of
 - Nature
 - Accidents or unusual events
- "Noise" in the time series

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Does Your Time Series Have A Trend Component?

- A time series plot should help you to answer this question.
- Often it helps if you "smooth" the time series data to help answer this question.
- Two popular smoothing methods are moving averages and exponential smoothing.

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-13

Smoothing Methods

- Moving Averages
 - Calculate moving averages to get an overall impression of the pattern of movement over time
 - Averages of consecutive time series values for a chosen period of length L
- Exponential Smoothing
 - A weighted moving average

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Moving Averages

- Used for smoothing
- A series of arithmetic means over time
- Result dependent upon choice of L (length of period for computing means)
- Last moving average of length L can be extrapolated one period into future for a short term forecast
- Examples:
 - For a 5 year moving average, L = 5
 - For a 7 year moving average, L = 7
 - Etc.

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-15

Moving Averages

(continued)

- Example: Five-year moving average
 - First average:

$$MA(5) = \frac{Y_1 + Y_2 + Y_3 + Y_4 + Y_5}{5}$$

Second average:

$$MA(5) = \frac{Y_2 + Y_3 + Y_4 + Y_5 + Y_6}{5}$$

etc.

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Annual vs. Moving Average

The 5-year moving average smoothes the data and makes it easier to see the underlying trend

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-19

Exponential Smoothing

- Used for smoothing and short term forecasting (one period into the future)
- A weighted moving average
 - Weights decline exponentially
 - Most recent observation weighted most

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Exponential Smoothing

(continued)

- The weight (smoothing coefficient) is W
 - Subjectively chosen
 - Ranges from 0 to 1
 - Smaller W gives more smoothing, larger W gives less smoothing
- The weight is:
 - Close to 0 for smoothing out unwanted cyclical and irregular components
 - Close to 1 for forecasting

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-21

Exponential Smoothing Model

Exponential smoothing model

$$\boldsymbol{\mathsf{E}_1} = \boldsymbol{\mathsf{Y}_1}$$

$$\mathsf{E}_{\mathsf{i}} = \mathsf{WY}_{\mathsf{i}} + (\mathsf{1} - \mathsf{W})\mathsf{E}_{\mathsf{i} - \mathsf{1}}$$

For i = 2, 3, 4, ...

where:

E_i = exponentially smoothed value for period i

E_{i-1} = exponentially smoothed value already

computed for period i - 1

Y_i = observed value in period i

W = weight (smoothing coefficient), 0 < W < 1

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Forecasting Time Period i + 1

The smoothed value in the current period (i) is used as the forecast value for next period (i + 1):

$$\hat{Y}_{i+1} = E_i$$

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-25

Exponential Smoothing in Excel

- Use data analysis / exponential smoothing
 - The "damping factor" is (1 W)

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

There Are Three Popular Methods For Trend-Based Forecasting

- Linear Trend Forecasting
- Nonlinear Trend Forecasting
- Exponential Trend Forecasting

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-27

Linear Trend Forecasting

Estimate a trend line using regression analysis

Year	Time Period (X)	Sales (Y)	
1999	0	20	
2000	1	40	
2001	2	30	
2002	3	50	
2003	4	70	
2004	5	65	

Use time (X) as the independent variable:

$$\hat{Y} = b_0 + b_1 X$$

In least squares linear, non-linear, and exponential modeling, time periods are numbered starting with 0 and increasing by 1 for each time period.

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Nonlinear Trend Forecasting

- A nonlinear regression model can be used when the time series exhibits a nonlinear trend
- Quadratic form is one type of a nonlinear model:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i$$

- Compare adj. r² and standard error to that of linear model to see if this is an improvement
- Can try other functional forms to get best fit

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc

Chap 16-3

Exponential Trend Model

Another nonlinear trend model:

$$Y_i = \beta_0 \beta_1^{X_i} \epsilon_i$$

Transform to linear form:

$$\log(Y_i) = \log(\beta_0) + X_i \log(\beta_1) + \log(\epsilon_i)$$

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Exponential Trend Model

(continued)

Exponential trend forecasting equation:

$$\log(\hat{Y}_i) = b_0 + b_1 X_i$$

where b_0 = estimate of $log(\beta_0)$ b_1 = estimate of $log(\beta_1)$

Interpretation:

 $(\hat{\beta}_1 - 1) \times 100\%$ is the estimated annual compound growth rate (in %)

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-33

Trend Model Selection Using Differences

 Use a linear trend model if the first differences are approximately constant

$$(Y_2 - Y_1) = (Y_3 - Y_2) = \cdots = (Y_n - Y_{n-1})$$

 Use a quadratic trend model if the second differences are approximately constant

$$[(Y_3 - Y_2) - (Y_2 - Y_1)] = [(Y_4 - Y_3) - (Y_3 - Y_2)]$$
$$= \dots = [(Y_n - Y_{n-1}) - (Y_{n-1} - Y_{n-2})]$$

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Trend Model Selection Using Differences

(continued)

 Use an exponential trend model if the percentage differences are approximately constant

$$\frac{(Y_2 - Y_1)}{Y_1} \times 100\% = \frac{(Y_3 - Y_2)}{Y_2} \times 100\% = \dots = \frac{(Y_n - Y_{n-1})}{Y_{n-1}} \times 100\%$$

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-35

Autoregressive Modeling

- Used for forecasting
- Takes advantage of autocorrelation
 - 1st order correlation between consecutive values
 - 2nd order correlation between values 2 periods apart
- pth order Autoregressive model:

$$\boxed{\mathbf{Y_i} = \mathbf{A_0} + \mathbf{A_1}\mathbf{Y_{i-1}} + \mathbf{A_2}\mathbf{Y_{i-2}} + \dots + \mathbf{A_p}\mathbf{Y_{i-p}} + \delta_i}$$
 Random Error

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Autoregressive Model Example: Forecasting

Use the second-order equation to forecast number of units for 2005:

$$\begin{split} \hat{Y}_i &= 3.5 + 0.8125 Y_{i-1} - 0.9375 Y_{i-2} \\ \hat{Y}_{2005} &= 3.5 + 0.8125 (Y_{2004}) - 0.9375 (Y_{2003}) \\ &= 3.5 + 0.8125 (6) - 0.9375 (4) \\ &= 4.625 \end{split}$$

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-39

Autoregressive Modeling Steps

- 1. Choose p (note that df = n 2p 1)
- 2. Form a series of "lagged predictor" variables Y_{i-1} , Y_{i-2} , ..., Y_{i-D}
- 3. Use Excel or Minitab to run regression model using all p variables
- 4. Test significance of Ap
 - If null hypothesis rejected, this model is selected
 - If null hypothesis not rejected, decrease p by 1 and repeat

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Choosing A Forecasting Model

- Perform a residual analysis
 - Look for pattern or trend
- Measure magnitude of residual error using squared differences
- Measure magnitude of residual error using absolute differences
- Use simplest model
 - Principle of parsimony

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Measuring Errors

- Choose the model that gives the smallest measuring errors
- Sum of squared errors (SSE)

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Sensitive to outliers

Mean Absolute Deviation (MAD)

$$MAD = \frac{\sum_{i=1}^{n} \left| Y_i - \hat{Y}_i \right|}{n}$$

 Less sensitive to extreme observations

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-43

Principal of Parsimony

- Suppose two or more models provide a good fit for the data
- Select the simplest model
 - Simplest model types:
 - Least-squares linear
 - Least-squares quadratic
 - 1st order autoregressive
 - More complex types:
 - 2nd and 3rd order autoregressive
 - Least-squares exponential

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Forecasting With Seasonal Data

- Time series are often collected monthly or quarterly
- These time series often contain a trend component, a seasonal component, and the irregular component
- Suppose the seasonality is quarterly
 - Define three new dummy variables for quarters:

 $Q_1 = 1$ if first quarter, 0 otherwise

 $Q_2 = 1$ if second quarter, 0 otherwise

 $Q_3 = 1$ if third quarter, 0 otherwise

(Quarter 4 is the default if $Q_1 = Q_2 = Q_3 = 0$)

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc

Chap 16-45

Exponential Model with Quarterly Data

$$Y_i = \beta_0 \beta_1^{X_i} \beta_2^{Q_1} \beta_3^{Q_2} \beta_4^{Q_3} \epsilon_i$$

 $(\beta_1-1)x100\%$ is the quarterly compound growth rate

 β_i provides the multiplier for the i^{th} quarter relative to the 4th quarter (i = 2, 3, 4)

Transform to linear form:

$$log(Y_i) = log(\beta_0) + X_i log(\beta_1) + Q_1 log(\beta_2)$$
$$+ Q_2 log(\beta_3) + Q_3 log(\beta_4) + log(\epsilon_i)$$

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Estimating the Quarterly Model

Exponential forecasting equation:

$$\log(\hat{Y}_i) = b_0 + b_1 X_i + b_2 Q_1 + b_3 Q_2 + b_4 Q_3$$

where b_0 = estimate of log(β_0), so $10^{b_0} = \hat{\beta}_0$ b_1 = estimate of log(β_1), so $10^{b_1} = \hat{\beta}_1$ etc...

Interpretation:

 $(\hat{\beta}_1 - 1) \times 100\%$ = estimated quarterly compound growth rate (in %)

 $\hat{\beta}_2$ = estimated multiplier for first quarter relative to fourth quarter

 $\boldsymbol{\hat{\beta}}_{\scriptscriptstyle 3}$ = estimated multiplier for second quarter rel. to fourth quarter

 $\hat{\beta}_4$ = estimated multiplier for third quarter relative to fourth quarter

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chan 16-47

Quarterly Model Example

Suppose the forecasting equation is:

$$log(\hat{Y}_i) = 3.43 + .017X_i - .082Q_1 - .073Q_2 + .022Q_3$$

 $b_0 = 3.43$, so $10^{b_0} = \hat{\beta}_0 = 2691.53$

 $b_1 = .017$, so $10^{b_1} = \hat{\beta}_1 = 1.040$

 $b_2 = -.082$, so $10^{b_2} = \hat{\beta}_2 = 0.827$

 $b_3 = -.073$, so $10^{b_3} = \hat{\beta}_3 = 0.845$

 $b_4 = .022$, so $10^{b_4} = \hat{\beta}_4 = 1.052$

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Quarterly Model Example

(continued)

Value: Interpretation:

$\boldsymbol{\hat{\beta}_0 = 2691.53}$	Unadjusted trend value for first quarter of first year
$\boldsymbol{\hat{\beta}_1} = 1.040$	4.0% = estimated quarterly compound growth rate
$\hat{\boldsymbol{\beta}}_2 = 0.827$	Average sales in Q ₁ are 82.7% of average 4 th quarter sales, after adjusting for the 4% quarterly growth rate
$\hat{\beta}_3 = 0.845$	Average sales in Q ₂ are 84.5% of average 4 th quarter sales, after adjusting for the 4% quarterly growth rate
$\hat{\beta}_4 = 1.052$	Average sales in Q ₃ are 105.2% of average 4 th quarter sales, after adjusting for the 4% quarterly growth rate

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-4

Index Numbers

- Index numbers allow relative comparisons over time
- Index numbers are reported relative to a Base Period Index
- Base period index = 100 by definition
- Used for an individual item or group of items

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Simple Price Index

Simple Price Index:

$$I_{i} = \frac{P_{i}}{P_{base}} \times 100$$

where

I_i = index number for year i

P_i = price for year i

P_{base} = price for the base year

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-5

Index Numbers: Example

Airplane ticket prices from 1995 to 2003:

Alipiane licket prices from 1993 to 2003.			
Year	Price	Index (base year = 2000)	
1995	272	85.0	. P ₁₀₀₀ 288
1996	288	90.0	$I_{1996} = \frac{P_{1996}}{P_{2000}} \times 100 = \frac{288}{320} (100) = 9$
1997	295	92.2	2000
1998	311	97.2	Base Year:
1999	322	100.6	
2000	320	100.0	$I_{2000} = \frac{P_{2000}}{P_{2000}} \times 100 = \frac{320}{320} (100) = 10$
2001	348	108.8	2000
2002	366	114.4	P 384
2003	384	120.0	$I_{2003} = \frac{P_{2003}}{P_{2000}} \times 100 = \frac{384}{320} (100) = 12$
			$P_{2000} = 320$
sic Business Statistics, 11e © 2009 Prentice-Hall, Inc			Chap 1

Index Numbers: Interpretation

$$\boxed{I_{1996} = \frac{P_{1996}}{P_{2000}} \times 100 = \frac{288}{320}(100) = 90}$$

 Prices in 1996 were 90% of base year prices

$$I_{2000} = \frac{P_{2000}}{P_{2000}} \times 100 = \frac{320}{320} (100) = 100$$

 Prices in 2000 were 100% of base year prices (by definition, since 2000 is the base year)

$$I_{2003} = \frac{P_{2003}}{P_{2000}} \times 100 = \frac{384}{320} (100) = 120$$

Prices in 2003 were 120% of base year prices

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-53

Aggregate Price Indexes

 An aggregate index is used to measure the rate of change from a base period for a group of items

Unweighted Aggregate Price Index

Unweighted aggregate price index formula:

$$I_U^{(t)} = \frac{\sum_{i=1}^n P_i^{(t)}}{\sum_{i=1}^n P_i^{(0)}} \times 100$$

i = item

t = time period

n = total number of items

 $I_{U}^{(t)}$ = unweighted price index at time t

 $\sum_{i=1}^{n} P_{i}^{(t)}$ = sum of the prices for the group of items at time t

 $\sum_{i=1}^{n} P_{i}^{(0)} = \text{sum of the prices for the group of items in time period } 0$

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-5

Unweighted Aggregate Price Index: Example

		oile Expen Amounts			
Year	Lease payment	Fuel	Repair	Total	Index (2001=100)
2001	260	45	40	345	100.0
2002	280	60	40	380	110.1
2003	305	55	45	405	117.4
2004	310	50	50	410	118.8

$$I_{2004} = \frac{\sum P_{2004}}{\sum P_{2001}} \times 100 = \frac{410}{345} (100) = 118.8$$

 Unweighted total expenses were 18.8% higher in 2004 than in 2001

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Weighted Aggregate Price Indexes

Laspeyres index

$$I_L^{(t)} = \frac{\sum_{i=1}^n P_i^{(t)} Q_i^{(0)}}{\sum_{i=1}^n P_i^{(0)} Q_i^{(0)}} \times 100$$

Q_i⁽⁰⁾: weights based on period 0 quantities

Paasche index

$$I_{P}^{(t)} = \frac{\sum_{i=1}^{n} P_{i}^{(t)} Q_{i}^{(t)}}{\sum_{i=1}^{n} P_{i}^{(0)} Q_{i}^{(t)}} \times 100$$

Q_i^(t): weights based on current period quantities

 $P_i^{(t)}$ = price in time period t

 $P_i^{(0)}$ = price in period 0

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-57

Common Price Indexes

- Consumer Price Index (CPI)
- Producer Price Index (PPI)
- Stock Market Indexes
 - Dow Jones Industrial Average
 - S&P 500 Index
 - NASDAQ Index

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Pitfalls in Time-Series Analysis

- Assuming the mechanism that governs the time series behavior in the past will still hold in the future
- Using mechanical extrapolation of the trend to forecast the future without considering personal judgments, business experiences, changing technologies, and habits, etc.

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 16-59

Chapter Summary

- Discussed the importance of forecasting
- Addressed component factors of the time-series model
- Performed smoothing of data series
 - Moving averages
 - Exponential smoothing
- Described least square trend fitting and forecasting
 - Linear, quadratic and exponential models

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chapter Summary

(continued)

- Addressed autoregressive models
- Described procedure for choosing appropriate models
- Addressed time series forecasting of monthly or quarterly data (use of dummy variables)
- Discussed pitfalls concerning time-series analysis
- Discussed index numbers and index number development

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.