

Basic Business Statistics 11th Edition

Chapter 15

Multiple Regression Model Building

Learning Objectives

In this chapter, you learn:

- To use quadratic terms in a regression model
- To use transformed variables in a regression model
- To measure the correlation among the independent variables
- To build a regression model using either the stepwise or best-subsets approach
- To avoid the pitfalls involved in developing a multiple regression model

Nonlinear Relationships

- The relationship between the dependent variable and an independent variable may not be linear
- Can review the scatter plot to check for nonlinear relationships
- Example: Quadratic model

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{1i}^{2} + \epsilon_{i}$$

 The second independent variable is the square of the first variable

Quadratic Regression Model

Model form:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{1i}^2 + \epsilon_i$$

where:

 $\beta_0 = Y$ intercept

 β_1 = regression coefficient for linear effect of X on Y

 β_2 = regression coefficient for quadratic effect on Y

 ε_i = random error in Y for observation i

Linear vs. Nonlinear Fit

Quadratic Regression Model

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{1i}^{2} + \epsilon_{i}$$

Quadratic models may be considered when the scatter plot takes on one of the following shapes:

 β_1 = the coefficient of the linear term

 β_2 = the coefficient of the squared term

Testing the Overall Quadratic Model

Estimate the quadratic model to obtain the regression equation:

$$\hat{Y}_{i} = b_{0} + b_{1}X_{1i} + b_{2}X_{1i}^{2}$$

Test for Overall Relationship

 H_0 : $\beta_1 = \beta_2 = 0$ (no overall relationship between X and Y)

 H_1 : β_1 and/or $\beta_2 \neq 0$ (there is a relationship between X and Y)

$$F_{STAT} = \frac{MSR}{MSE}$$

Testing for Significance: Quadratic Effect

- Testing the Quadratic Effect
 - Compare quadratic regression equation

$$Y_i = b_0 + b_1 X_{1i} + b_2 X_{1i}^2$$

with the linear regression equation

$$\left|Y_{i}=b_{0}+b_{1}X_{1i}\right|$$

Testing for Significance: Quadratic Effect

(continued)

- Testing the Quadratic Effect
 - Consider the quadratic regression equation

$$Y_i = b_0 + b_1 X_{1i} + b_2 X_{1i}^2$$

Hypotheses

 H_0 : $\beta_2 = 0$ (The quadratic term does not improve the model)

 H_1 : $\beta_2 \neq 0$ (The quadratic term improves the model)

Testing for Significance: Quadratic Effect

(continued)

Testing the Quadratic Effect

Hypotheses

 H_0 : $\beta_2 = 0$ (The quadratic term does not improve the model)

 H_1 : $\beta_2 \neq 0$ (The quadratic term improves the model)

The test statistic is

$$t_{STAT} = \frac{b_2 - \beta_2}{S_{b_2}}$$

$$d.f. = n - 3$$

where:

b₂ = squared term slope coefficient

 β_2 = hypothesized slope (zero)

 S_{b_2} = standard error of the slope

Testing for Significance: Quadratic Effect

(continued)

Testing the Quadratic Effect

Compare r² from simple regression to adjusted r² from the quadratic model

If adj. r² from the quadratic model is larger than the r² from the simple model, then the quadratic model is likely a better model

Example: Quadratic Model

Purity	Filter Time		
3	1		
7	2		
8	3		
15	5		
22	7		
33	8		
40	10		
54	12		
67	13		
70	14		
78	15		
85	15		
87	16		
99	17		

Purity increases as filter time increases:

Example: Quadratic Model

(continued)

Simple regression results:

$$\hat{Y} = -11.283 + 5.985$$
 Time

	Coefficients	Standard Error	t Stat	P-value
Intercept	-11.28267	3.46805	-3.25332	0.00691
Time	5.98520	0.30966	19.32819	2.078E-10

t statistic, F statistic, and r² are all high, but the residuals are not random:

Regression Statistics			
R Square	0.96888		
Adjusted R Square	0.96628		
Standard Error	6.15997		

F	Significance F		
373.57904	2.0778E-10		

Example: Quadratic Model in Excel

(continued)

Quadratic regression results:

$$^{\diamond}$$
 = 1.539 + 1.565 Time + 0.245 (Time)²

	Coefficients	Standard Error	t Stat	P-value
Intercept	1.53870	2.24465	0.68550	0.50722
Time	1.56496	0.60179	2.60052	0.02467
Time-squared	0.24516	0.03258	7.52406	1.165E-05

Regression Statistics			
R Square	0.99494		
Adjusted R Square	0.99402		
Standard Error	2.59513		

F	Significance F
1080.7330	2.368E-13

The quadratic term is significant and improves the model: adj. r² is higher and S_{YX} is lower, residuals are now random

Example: Quadratic Model in Minitab

Quadratic regression results:

 $Y = 1.539 + 1.565 \text{ Time} + 0.245 (\text{Time})^2$

The regression equation is Purity = 1.54 + 1.56 Time + 0.245 Time Squared

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 1.5390
 2.24500
 0.69
 0.507

 Time
 1.5650
 0.60180
 2.60
 0.025

 Time Squared
 0.24516
 0.03258
 7.52
 0.000

S = 2.59513 R-Sq = 99.5% R-Sq(adj) = 99.4%

The quadratic term is significant and improves the model: adj. r^2 is higher and S_{YX} is lower, residuals are now random

Using Transformations in Regression Analysis

Idea:

- non-linear models can often be transformed to a linear form
 - Can be estimated by least squares if transformed
- transform X or Y or both to get a better fit or to deal with violations of regression assumptions
- Can be based on theory, logic or scatter plots

The Square Root Transformation

The square-root transformation

$$Y_i = \beta_0 + \beta_1 \sqrt{X_{1i}} + \epsilon_i$$

- Used to
 - overcome violations of the constant variance assumption
 - fit a non-linear relationship

The Square Root Transformation

(continued)

$$\left|Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \epsilon_{i}\right|$$

Shape of original relationship

$$\left|Y_{i} = \beta_{0} + \beta_{1} \sqrt{X_{1i}} + \epsilon_{i}\right|$$

Relationship when transformed

The Log Transformation

The Multiplicative Model:

- Original multiplicative model
- Transformed multiplicative model

$$Y_i = \beta_0 \; X_{1i}^{\beta_1} \; \epsilon_i$$

$$|Y_i = \beta_0 X_{1i}^{\beta_1} \epsilon_i| \qquad \Longrightarrow |\log Y_i = \log \beta_0 + \beta_1 \log X_{1i} + \log \epsilon_i|$$

The Exponential Model:

Original multiplicative model

Transformed exponential model

$$Y_i = e^{\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}} \epsilon_i$$

Interpretation of coefficients

For the multiplicative model:

$$\log Y_i = \log \beta_0 + \beta_1 \log X_{1i} + \log \epsilon_i$$

- When both dependent and independent variables are logged:
 - The coefficient of the independent variable X_k can be interpreted as: a 1 percent change in X_k leads to an estimated b_k percentage change in the average value of Y. Therefore b_k is the elasticity of Y with respect to a change in X_k.

Collinearity

- Collinearity: High correlation exists among two or more independent variables
- This means the correlated variables contribute redundant information to the multiple regression model

Collinearity

(continued)

- Including two highly correlated independent variables can adversely affect the regression results
 - No new information provided
 - Can lead to unstable coefficients (large standard error and low t-values)
 - Coefficient signs may not match prior expectations

Some Indications of Strong Collinearity

- Incorrect signs on the coefficients
- Large change in the value of a previous coefficient when a new variable is added to the model
- A previously significant variable becomes nonsignificant when a new independent variable is added
- The estimate of the standard deviation of the model increases when a variable is added to the model

Detecting Collinearity (Variance Inflationary Factor)

VIF_i is used to measure collinearity:

$$VIF_{j} = \frac{1}{1 - R_{j}^{2}}$$

where R_{j}^{2} is the coefficient of determination of variable X_{i} with all other X variables

If $VIF_j > 5$, X_j is highly correlated with the other independent variables

Week	Pie Sales	Price (\$)	Advertising (\$100s)
1	350	5.50	3.3
2	460	7.50	3.3
3	350	8.00	3.0
4	430	8.00	4.5
5	350	6.80	3.0
6	380	7.50	4.0
7	430	4.50	3.0
8	470	6.40	3.7
9	450	7.00	3.5
10	490	5.00	4.0
11	340	7.20	3.5
12	300	7.90	3.2
13	440	5.90	4.0
14	450	5.00	3.5
15	300	7.00	2.7

Recall the multiple regression equation of chapter 14:

Sales =
$$b_0 + b_1$$
 (Price)
+ b_2 (Advertising)

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc..

Detecting Collinearity in Excel using PHStat

PHStat / regression / multiple regression ...

Check the "variance inflationary factor (VIF)" box

Regression Analysis				
Price and all other X				
Regression Statistics				
Multiple R	0.030438			
R Square	0.000926			
Adjusted R Square	-0.075925			
Standard Error	1.21527			
Observations	15			
VIF 1.000927				

Output for the pie sales example:

- Since there are only two independent variables, only one VIF is reported
 - VIF is < 5</p>
 - There is no evidence of collinearity between Price and Advertising

Detecting Collinearity in Minitab

Predictor	Coef	SE Coef	Τ	Р	VIF
Constant	306.50	114.3	2.68	0.020	
Price	- 24.98	10.83	-2.31	0.040	1.001
Advertising	74.13	25.97	2.85	0.014	1.001

- Output for the pie sales example:
 - Since there are only two independent variables, the VIF reported is the same for each variable
 - VIF is < 5</p>
 - There is no evidence of collinearity between Price and Advertising

Model Building

- Goal is to develop a model with the best set of independent variables
 - Easier to interpret if unimportant variables are removed
 - Lower probability of collinearity
- Stepwise regression procedure
 - Provide evaluation of alternative models as variables are added and deleted
- Best-subset approach
 - Try all combinations and select the best using the highest adjusted r² and lowest standard error

Stepwise Regression

- Idea: develop the least squares regression equation in steps, adding one independent variable at a time and evaluating whether existing variables should remain or be removed
- The coefficient of partial determination is the measure of the marginal contribution of each independent variable, given that other independent variables are in the model

Best Subsets Regression

 Idea: estimate all possible regression equations using all possible combinations of independent variables

 Choose the best fit by looking for the highest adjusted r² and lowest standard error

Stepwise regression and best subsets regression can be performed using PHStat

Alternative Best Subsets Criterion

 Calculate the value C_p for each potential regression model

- Consider models with C_p values close to or below k + 1
 - k is the number of independent variables in the model under consideration

Alternative Best Subsets Criterion

(continued)

■ The C_p Statistic

$$C_p = \frac{(1-R_k^2)(n-T)}{1-R_T^2} - (n-2(k+1))$$

Where k = number of independent variables included in a particular regression model

T = total number of parameters to be estimated in the full regression model

 R_k^2 = coefficient of multiple determination for model with k independent variables

 R_T^2 = coefficient of multiple determination for full model with all T estimated parameters

Steps in Model Building

- 1. Compile a listing of all independent variables under consideration
- 2. Estimate full model and check VIFs
- 3. Check if any VIFs > 5
 - If no VIF > 5, go to step 4
 - If one VIF > 5, remove this variable
 - If more than one, eliminate the variable with the highest VIF and go back to step 2
- 4. Perform best subsets regression with remaining variables ...

Steps in Model Building

(continued)

- List all models with C_p close to or less than (k + 1)
- 6. Choose the best model
 - Consider parsimony
 - Do extra variables make a significant contribution?
- 7. Perform complete analysis with chosen model, including residual analysis
- Transform the model if necessary to deal with violations of linearity or other model assumptions
- 9. Use the model for prediction and inference

Model Building Flowchart

Pitfalls and Ethical Considerations

To avoid pitfalls and address ethical considerations:

- Understand that interpretation of the estimated regression coefficients are performed holding all other independent variables constant
- Evaluate residual plots for each independent variable
- Evaluate interaction terms

Additional Pitfalls and Ethical Considerations

(continued)

To avoid pitfalls and address ethical considerations:

- Obtain VIFs for each independent variable before determining which variables should be included in the model
- Examine several alternative models using bestsubsets regression
- Use other methods when the assumptions necessary for least-squares regression have been seriously violated

Chapter Summary

- Developed the quadratic regression model
- Discussed using transformations in regression models
 - The multiplicative model
 - The exponential model
- Described collinearity
- Discussed model building
 - Stepwise regression
 - Best subsets
- Addressed pitfalls in multiple regression and ethical considerations