The following data are average 1992-2001 (based on the first quarter) market shares of Japanese cars in the market. Do trend analysis to predict next year value.

- a. If a three-term moving average is used to smooth this series, what would be the second and the final calculated moving averages?
- b. If this series is smoothed using exponential smoothing with a smoothing constant of 0.3, what would be the second term?
- c. Suppose the last two exponential smoothed values are 34 and 32.76 (Note: they are not true number). What would you forecast as the value of the time series for next year?
- d. We fit the linear, quadrate and exponential models for the data. Report MAPE, MAD and MSD for all models, select the best model. Explain.
- e. Predict the sale for the **next year** for all models.
- 2. A major developer of housing communities in a city kept a record of the relative cost of labor and materials in its market areas for the past five years. These data are as follows:

| Years                 | 1998     | 1999   | 2000   |
|-----------------------|----------|--------|--------|
| Average Labor cost    | SR 49000 | 57000  | 63000  |
| Average Material Cost | SR 95000 | 104000 | 110000 |
| % Material Cost       | 67       | 68     | 66     |

- Determine the simple index for each component in the construction of the house using 1999 as the base year.
- b. Find the unweighted aggregate index for the two components in the construction of the house using 1999 as the base year.
- c. Construct a Paasche index number using 1999 as base year.
- d. Construct a Laspeyres index number using 1999 as base year.
- **3.** The data in the file (toys-rev) question 16.48 are quarterly revenues (in millions of dollars). For the years 1996 through 2005. Use the following MINITAB output to answer the following questions.

$$\log \hat{Y} = 3.64 + 0.00199 \text{ X} - 0.379 \text{ Q1} - 0.385 \text{ Q2} - 0.352 \text{ Q3}$$

- where  $\hat{Y}$  is the estimated number of contracts in a quarter
  - X is the coded quarterly value with X = 1 in the first quarter of 1996.
  - $Q_1$  is a dummy variable equal to 1 in the first quarter of a year and 0 otherwise.
  - $Q_2$  is a dummy variable equal to 1 in the second guarter of a year and 0 otherwise.
  - $Q_3$  is a dummy variable equal to 1 in the third quarter of a year and 0 otherwise.
- a. The best interpretation of the coefficient of X (0.00199) in the regression equation is.
- b. The best interpretation of the coefficient of  $Q_2$  (-0.385) in the regression equation is.
- c. To obtain a forecast for the fourth quarter of 2006 using the model, what should we use for O1, O2 and O3?
- d. Using the regression equation, forecast the revenue for the third quarter of 2006.

Figure 1





Figure 3 **Trend Analysis Plot for Sales** Growth Curve Model Yt = 24.6209 \* (1.03263\*\*t) Variable 34 -Actual Fits 33 Accuracy Measures 32 -3.08106 0.90713 0.99514 MAPE MAD 31 -MSD Sales 30 29 28 27 26 25 -4 5 6 8 ģ 10 Index