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Chapter One

Development Of The Mathematical Model

This paper presents some analysis of the growth model for mycelium in the
presence and absence of diffusion based on the reaction-diffusion equation. The work
and effort applied in this project is in fact a continuation of collaborative work
accomplished by Dr. Ernest Boyd, Mathematics, Dr. Keith Klein, Biology, and their
students. An extensive use of the computer software Mathematica® will provide
significant assistance in studying the behavior of the model and the mathematical analysis
of the system. This mathematical model attempts to explain the formation of regular and
irregular growth patterns of mycelium. A derivation of some algebraic inequalities using
the Jacobian matrix will be needed to analyze stability and instability of the system at
equilibrium. These inequalities, as we shall see later, will be the conditions we are going
to test as necessary conditions for irregular growth patterns. We are hoping that certain
values of the parameters involved in our mathematical model will satisfy the conditions

imposed by the inequalities and so providing a solution to the problem.

Suppose reaction-diffusion occurs in a two-dimensional space. Let A(x,y,t) be
the density of some substance at time t, then the rate of change of this substance with
respect to time includes the growth term, the decay term, and the diffusion term of that

substance. Namely,

! Al analysis and graphs presented in this paper are generated by Mathematica 4.1.
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Rate of Change = Y = growth — decay + diffusion.

where, growth and decay can depend on the reaction between A and another substance.
This leads to a system of two coupled partial differential equations. The biological
features of the mycelium model must show two different patterns of growth. We know
that mycelia grow in some environments outward in the radial direction with symmetric,
regular logistic growth (Figure 1.1.)> In other environments the cells also produce some
chemical inhibitor, which propagates radially and outwards as well causing the cells to
grow irregularly when diffusion is present and a different pattern appears (Figure 1.2.)3
This is due to the high concentration of the inhibitor and faster diffusion rate compared

with the cells. We are going to use polar coordinates in our analysis. Let U = U(r,0,t)

: : cells .
be the density of cells of mycelium = [mmz}’ W =W(r,0,t) be the concentration of

. moles . : . .
chemical inhibitor = { o } . In addition, suppose the cells are placed in a circular petri

dish with sufficient culture media to grow. With diffusion the system of differential

equations will be:

ou
" F(U,W)- CUW + DV?U (1)

oW , ,
— = AUZ-BW+DyW @)

where F(U,W) represents the mycelial growth rate, CUW represents the effect of the

% Bezzi, M., A. Ciliberto, and A.Mengoni, “Pattern Formation by Competition: A Biological Example,”
ArXiv, 2001, p. 8.
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chemical inhibitor upon the decay of the cells, D,V U represents the rate at which the

cells diffuse, AU’ represents the rate of production of the chemical inhibitor, BW
represents its rate of decay, and D,V°W represents the rate at which the chemical

inhibitor diffuses.

Since we are using polar coordinates, we assume 0<r<r, . and 0<0 < 2xn, with

U r<r
initial conditions U (r,0,0) ={ 00 s ro and W(r,0,0)= 0. At the boundary, we
=0

assume there is no growth of the mycelium or production of the chemical inhibitor, i.e.

U(r,.,.0,t)=0 and W(r,,,0,t)=0. We take care of periodicity by supposing that the

density of mycelium and the concentration of the chemical inhibitor do not change for all
multiples of 2rx; that is to say U(r,0 + 2x,t) = U(r,0,t) and W(r,6 + 2r,t) = W(r,0,t).

We hypothesize that the growth rate of the mycelium is a hyperlogistic curve
u, . s . o .
FUW)=RUP@1- R) with p>1." Here, R is the intrinsic growth rate, and K is the

carrying capacity.

This system can be normalized and represented in dimensionless form as follows:

ou
P f(u,w)-uw+ VZu (3)
ow

e au’ - bw+ dv *w (4)

3 -
Bezzi, p. 8.
* Tsoularis, A., Analysis of Logistic Growth Models, Res. Lett. Inf. Math. Sci. (2001) 2, pp. 23-46.



d = —=. Here, d is the coefficient of diffusion and we assume it is greater than one.

R(r ) K"™ ¢

(Mo

At equilibrium,
D, q

With our hypothesis f (u,w)=ru’(1-u) where r=

au aW * * * *
P 0= o and V2u=0=V?w. Hence, we solve (3) and (4) as f(u",w")=uw and
T T

a(u’)® = bw’ to determine the steady-state equilibrium (u”,w"). Since we normalized all

parameters, we restrict 0< u”,w’,r<1, a,b>0,and d > 1. Inthe later chapters, we will

study f (u,w) in more detail.

Experiments in Dr. Klein’s laboratory show that the cells of mycelium
demonstrate symmetrical growth patterns in the absence of the chemical inhibitor;
however, with the presence of the inhibitor the cells form an asymmetrical spatial pattern.
Therefore, in the mathematical model we need to look for a stable equilibrium without
diffusion and an unstable equilibrium with diffusion. We analyze the mathematical
model in (3) and (4) using standard Fourier analysis as shown in [6] leading to the

following inequalities.

TR <b (5)

® A detailed explanation of each parameter and its representation in (1), (2), (3), and (4) can be found in
[6] Qian, “Reaction Diffusion Equations for the Growth of Mycelium”.



* 2
of .
0< 3a(u*)2—b£—2au*af*<d ‘ ou “omaw (6)
ou oW 2d

These inequalities are necessary conditions on f (u,w) in order for (u”,w") to be a stable
equilibrium without diffusion and an unstable equilibrium with diffusion. However, the
most challenging task is to find such a growth function f(u,w) that will satisfy the
inequalities. We will show in the next chapter that choosing the growth function to be
f (u,w) = ru(1- u) contradicts the inequalities in (5) and (6). Therefore, we will modify
f (u,w) to be generalized logistic growth to search for possible solutions. This is what

we are going to discuss in Chapter Three and setup Mathematica to test and analyze.



Chapter Two

Mathematical Analysis With The Logistic Growth Function

In this chapter, we will show that choosing the growth function f (u,w) to be a
logistic growth with p=1, i.e., f(u,w)=ru(l-u), will lead us to a contradiction with
the conditions prescribed by the inequalities in (5) and (6). Consider the Jacobian matrix

£ W* 2 i* u’c
J-g°D=| au T w (7)

2au” -b-qg*d

10
where D = {0 d} 5 The characteristic eigenvalues corresponding to this matrix are of

tr(J - q?D) £ |/tr(J - q?D)? - 4det(J - g°D)
2

the form A = For instability we need

|A|> 0. This holds when tr(J-g°D)> 0 or det(J-g°D)< 0, so we have two cases to

probe.

*

of . L
If tr(J-qg°D)>0, we have T -q°-b-9g°d>0 which implies that

*

T W +b+g°@+d)>w +b. Yet, in the absence of diffusion we needed

of 7 . : -
6_u<W +b. This leads us to a contradiction. If det(J-qg°D)<0, we have

o) [ @ imol
(au—w—q (—b—q d)— aw—u (2au)<0 which implies that

10
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of of of "
4 *_ 2 *_ _ * _ * - - -
dg” + (b+ dw d_au jq + b[w _5uj 2au (_aw u j < 0. The latter inequality is

a parabola in g® with vertex in the forth quadrant that opens upward.

We next examine the logistic growth function f (u,w) = ru(1- u). Suppose the intrinsic

*

of .
growth rate r is a function of w only, i.e. r=r(w). Then, T r(1- 2u’) and therefore

*

af * * * -y - * * * *
E_W =r(l-2u)-w . Note that at equilibrium we have f(u,w)=uw, so

*

. « : of .. :
w =r(1-u). We then substitute m and w in (5) to obtain

*

E<i w <b
d ou

b . «
E< rl-2u)-r(1-u)<b

§<—ru*<b

This is not possible because we have a negative real number trapped between two
positive numbers for all 0<r and 0<u". Hence, limiting the growth function to be

f(u,w)=ru(l-u) does not satisfy the inequality in (5). Dr. Boyd also tried

f(u,w) = B(l— %j u(1- u) which will give the same result.

® Refer to [6] Qian for more explanation.



Chapter Three

Mathematical Analysis With The Hyperlogistic Growth Function And Results

In the previous chapter, we proved by letting p=1 in the modified growth
function, f(u,w)=ru’(1-u), the algebraic inequality in (5) does not hold. This leads
us to consider different values for p. Before we analyze the system of differential

equations in (3) and (4) for various values of p, we are going to study the behavior of the

model without diffusion when p=1. Recall the differential equations in (3) and (4).
Having no diffusion in the growth process eliminates the diffusion terms in those

equations, i.e., V?u= 0= V2w, and the system simplifies,

ou
Pl ru(l- u)-uw (8)

0
AL au® - bw (9)

. —_— ou ow
Again at equilibrium, we have —=10

P - The next step is to solve (8) and (9) to
T T

, o a
determine the isoclines w = Buz and w=r(1-u).

We then setup Mathematica to solve for the equilibrium point (u”,w’) to obtain

12
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The Jacobian matrix

“br+ Jbr(4a+ br) r(2a+brir\/m)] 7

2a ' 2a

corresponding to the system in (8) and (9) is,

(10)

r(l-u)-ru-w -u
[ 2au —b}

br - \/br(4a+ br)

2 3
Now substitute (u”,w") in (10) to get br™ - /br*(4a+ br) 2a which

~br + \/br(4a+ br) -b

has a corresponding characteristic eigenvalue of A =

2ab-br? + \/br®(4a+br) + \/—Sabr(4a+ br - \/br(4a+ br))+ (Zab— br? + \br®(4a+ br))2

—da

For example, let a=1, b=05, and r=09. The isoclines are shown in Figure 3.3.
Then L =-0467+0681i and so the point (u’,w’)= (0482, 0465) is a stable
equilibrium. We let Mathematica do the symbolic computation to determine the behavior
of the vector field by calling the subroutine PlotVectorField. The path of a trajectory in
time can be solved numerically with u(0) = 0.01, w(0)= 0 and plotted by calling the
subroutines NDSolve and ParametricPlot; see Figure 3.4. Note that (u”,w’) in Figure
3.4 is a stable spiral node. The graphs of u(t) and w(t) as functions of t are shown in

Figures 3.5 and 3.6.

" Refer to attached Appendix One for Mathematica notebook.
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Next, we analyze the generalized logistic growth function, f (u,w)= ru®(1-u),

using the algebraic compound inequalities in (5) and (6). We are going to do three tests
here. First, we test inequality (5) for given values of b and d. We are going to call it
Testl. Then, we test the left side of inequality (6), and we are going to call it Test2.
Finally, we take the right side of inequality (6) minus the left side, and we are going to

call it Test3. The three tests in order are:

E<i w <b
d ou
of of "
*2_ __2 *_
0< 3a(u) bau au W
* 2
f *
d%u—b—dw of " of”
_ *\ 2 R *_
0<d >d 3a(u)+bau+2au o

Remember that these tests are necessary conditions for validity of the solution but not
sufficient. So we may or may not obtain a solution even if these conditions are satisfied.

We now proceed with the analysis as follows.

At equilibrium fu,w)=r(u)’@-u)=uw. This  gives

* *

*

w' =r(u)"(@-u") and %: rp(@-u”)(u)" - r(u”)”. Substituting aaLu and w" in

(5) to get Testl,



B ()l o) ) <
(- 0) - b)) <

g< r(u”)”(p(2-u")-1)<b

. . s -1
Note that one u-intercept for this polynomial is u = pT

15

(11)

. of” _ ,
For the second test, we need to find W and the constant a. Since, f(u,w) isa

- - af* - * * - *
function of u only, this means that —--=0. Also, since W’ = r(u’)”"(@-u") and

LA, . P, .
W= B(u )’ at equilibrium, then a = rb(u”)" (1- u"). Hence Test2 is

0< 3rb(u”)” (@- u")- rop@-u")(u )"+ r(u’)* -0

0< rb(u”)"(3-2u"+ p(u” - 1))

Similarly, Test3 simplifies in the same manner.

(b+ d(pr(u*)pfl(u* “D+w s r(u*)p))2
ad

0< - Test2

(12)
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2

(b+ d(pr(u*)p—l(u* 1) I‘(u*)p_l(l_ ) r(u*)p))

- Test2
4d est

0<

(b +rd(u) (pu -1+ 1))2

0< 4d

- rb(u*)pfl(B— 2u+ p(u- 1))

0< (b +rd(u)” (pu -1+ 1))2 — 4rbd(u”)"(3- 2u+ p(u-1)) (13)

At this point, we have no idea what values for a, b, d, r and p will satisfy the tests
in (11), (12), and (13). Thus, the next phase is to search for possible values, if there are

any, satisfying the necessary conditions in (11), (12), and (13). The best way to approach

this is by fixing b, d and p and then seeking possible values for r and u”. Once we find

*

(")

p=5, b=015, d=35 and assume we are looking for r and u". The solution is

valid r and u” then we retrieve a from a = rb(u*)pfa(l— u)=b at equilibrium. Let

represented in terms of a feasible set as in Figure 3.7a; the red region implies the three

tests are all satisfied. Figure 3.7b shows a as a function of uand r.

*

: . of
Now, recall the Jacobian matrix in (7). We already have shown that T 0 and

—= r(u*)p_l(p(l— u’)- u*). Moreover, W = r(u*)p_l(l— u), a= rb(u*)p_B(l— u’.

Hence, we can write (7) as,
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e [ b))
2au” I

A ou ow o .
At equilibrium, P 0= a0 and V?u= 0= V?w. In general, the isoclines are functions
T T

. _ a
w in terms of u, i.e. w= Buz and w=ru”*(1-u). For example when p=35, one

isocline is, w= 0.9u’*(1- u) while the other is w= 0133u?; see Figure 3.8.

Note that we have two equilibra other than (0, 0). It is obvious that (O, 0) is a
stable equilibrium. One equilibrium point is (0.630, 0.051) which has eigenvalues
A,=-0071 and %,=0038. Consequently, (0.630, 0.051) is a saddle point. The
second equilibrium is (0.709, 0.065) which has eigenvalues % = -0.025+ 0.059i. So, we
conclude that (0.709, 0.065) is a stable equilibrium. The graphs of the vector field and
the path of a trajectory in time with u(0) = 055, w(0) = 0 are shown in Figures 3.9. The
graphs of u(t), w(t) are shown in Figures 3.10 and 3.11. The mycelial cells will grow

until they reach their maximum, which is the carrying capacity.

The next example presents another interesting result. Suppose p= 3, a= 0.053,
b=0095, d=21, r=099 and ¢°=00001. The isoclines w=0558u*> and

w = 0.99u*(1- u) are shown in Figure 3.12. Then the equilibrium point is (0.437, 0.106)

which has corresponding eigenvalues of the form A = 0017+ 0.087i. Figure 3.13 shows

the behavior of the vector field and the path of a trajectory in time with initial conditions
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u(0)=0.2, w(0)=0. Figures 3.14 and 3.15 show the trajectory u(t) and w(t) as

functions of time 1. Note that in this case we are experiencing a limit cycle, which is not

biologically possible.

The next example is more biologically realistic. Suppose p=3, a=005,
b=009, d=101, r=099 and g*=001. Here, the isoclines w= 0556u” and

w = 0.99u®(1- u) are shown in Figure 3.16. Then the equilibrium point is (0.444, 0.098)

which has corresponding eigenvalues of the form A = 0.015+ 0.08i. Figure 3.17 shows
the behavior of the vector field, and the path of the trajectory in time with initial

conditions u(0) = 0.2, w(0) = 0. In this case, the cells of mycelium die completely after
they reach their maximum growth. The graphs of u(t) and w(t) are shown in Figures

3.18 and 3.19.

Appendix Two is a Mathematica code to search for possible values for r, u and a
given fixed values for b, d and p. We claim that there exists a solution inside the feasible
region where the three tests are fulfilled. We have found some good results. For

instance, Figure 3.20a shows the feasible region for p= 3, b= 01, d =55. Figure 3.21a
shows the feasible region for p=3, b=01, d=8. Figure 3.22a shows the feasible
region for p=3, b=013, d=9. Figure 3.23a shows the feasible region for p=3,
b= 005, d=55. Figure 3.24a shows the feasible region for p=3, b=0.01, d=55.
Figure 3.25a shows the feasible region for p=4, b=01, d = 3. Figure 3.26a shows the

feasible region for p=4, b=01, d=7. Figure 3.27a shows the feasible region for
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p=4, b=005, d=125. Figure 3.28a shows the feasible region for p=4, b= 025,

d =12. Figure 3.29a shows the feasible region for p=5, b= 01, d = 25. Figure 3.30a
shows the feasible region for p=5, b=01, d=75. Figure 3.31a shows the feasible
region for p=5, b=009, d=7. Figure 3.32a shows the feasible region for p=>5,
b= 005, d=175. Figure 3.33a shows the feasible region for p=7, b= 007, d =10.

On the other hand, Figures 3.20b through 3.33b show a as a function of u and r according

to the values of the parameters given in Figures 3.20a through 3.33a.

In conclusion, we have found some promising numerical values satisfying the
necessary conditions introduced by the inequalities. A value for the parameter a will be
determined from the experiments by Dr. Klein. The surface for a as a function of u and r
will be drawn to determine the level curve for that value of a. The value of r will be
chosen and then the point on the level curve for that value of r will determine the
equilibrium level u that is contained in the feasible region. Next we need to compare
these values with numerical simulations of the model. This project is the ground
foundation for further work solving the model numerically using either a finite difference
method or a finite element method. Finally, the numerical values described in this paper

must be examined by biologists to determine if they are biologically meaningful.



Figure 1.1. Pattern formed without
diffusion. (Courtesy of M. Bezzi.)
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Figure 3.3. Isoclines for p=1, a=1,
b=05, r=09.

2.3 3 7.5 10 12.5 15 17.3

Figure 3.5. u(t) as a function of 1.

Figure 1.2. Pattern formed with diffusion.

(Courtesy of M. Bezzi.)

Figure 3.4. Phase diagram for p=1,
b=05, r=09.

2.3 3 7.5 10 12.5 15 17.3

Figure 3.6. w(t) as a function of 1.
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Figure 3.7a. Feasible region in red for
p=5, b=015, d=35.

Figure 3.8. Isoclines for p=5, a= 002,
b=015, r=09.
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Figure 3.10. u(t) as a function of 1.
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Figure 3.9. Phase diagram for g° = 0.001,
p=5,a=002, b=015, r=09, d = 35.
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Figure 3.11. w(t) as a function of .
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005, b=009, r=0.99,

Figure 3.17. Phase diagram for g° = 0.01,
= 101.
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Figure 3.20b. a as a function of u and r.
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Figure 3.21b. a as a function of u and r.
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3,b=01,d

Figure 3.21a. Feasible region in red for
p



Figure 3.22b. a as a function of u and r.

3,b=013, d=9.

Figure 3.22a. Feasible region in red for
p

Figure 3.23b. a as a function of u and r.

Figure 3.23a. Feasible region in red for

p=3, b= 005, d =55.

Figure 3.24b. a as a function of u and r.

= b5.

=3,b=001,d

Figure 3.24a. Feasible region in red for
p



Figure 3.25a. Feasible region in red for Figure 3.25b. a as a function of u and r.
p=4,b=01,d=3.

Figure 3.26a. Feasible region in red for Figure 3.26b. a as a function of u and r.
p=4,b=01,d=7.

Figure 3.27a. Feasible region in red for Figure 3.27b. a as a function of u and r.
p=4,b=005, d=125.



Figure 3.28a. Feasible region in red for Figure 3.28b. a as a function of u and r.
p=4,b=025, d=12.

r
Anp..

Figure 3.29a. Feasible region in red for Figure 3.29b. a as a function of u and r.
p=5,b=01, d=25.

Figure 3.30a. Feasible region in red for Figure 3.30b. a as a function of u and r.
p=5,b=01,d=75.



Figure 3.31a. Feasible region in red for Figure 3.31b. a as a function of u and r.
p=5,b=009,d=7.

r

Figure 3.32a. Feasible region in red for Figure 3.32b. a as a function of u and r.
p=5,b=005, d=175.

r

Figure 3.33a. Feasible region in red for Figure 3.33b. a as a function of u and r.
p=7,b=007, d=10.



APPENDIX ONE
This Mathematica notebook plots the phase plane diagram.
ClearAll[a, b, d, 1, g2, u, w];
Solution1 ={a=0.05;r=0.99;b=0.09; d=1.01;92=0.01; p=3; };
Solution2 ={a=0.04;r=0.81;b=0.08;d=1.01;92=0.01; p=3; };
Solution3 = {p =5;a=0.015; b =0.112; d = 3.5; r = 0.9; g2 = 0.0004; };
Solution4 = {p =5;a=0.015; b =0.111; d = 3.5; r =0.9; g2 = 0.001; };
Solution5 = {p =5;a=0.015; b =0.11; d = 3.5; r =0.9; g2 = 0.0016; };
flu_, w_]:={r*u*p*(1 - u) - u*w - g2*u, a*u™2 - b*w - d*q2*w};
equilibrium = N[Solve[{f[u, w] == 0}, {u, w}]];
{SuperStar[u] = u /. equilibrium[[p + 1]], SuperStar[w] =w /. equilibrium[[p + 1]]}
Ju_, w_] ={DI[f[u, w], u], D[f[u, w], w]};
MatrixForm[Transpose[J[u, wW]]];
JacobianMatrix = Simplify[J[SuperStar[u], SuperStar[w]]];
\[Lambda] = Eigenvalues[JacobianMatrix]
Needs["Graphics PlotField™]
isoclines = Plot[{(a/(b + d*q2))*u”2, r*u™(p - 1)*(1 - u) - g2}, {u, 0, 1}, PlotRange ->
{{0, 1}, {0, 0.09}}, PlotStyle -> {{RGBColor[1, 0, 0]}, {RGBColor[0, 0,
1]1}}, AxesLabel -> {u[t], w[t]}, DisplayFunction -> Identity]

directionField = PlotVectorField[f[u, w], {u, 0, 1}, {w, 0, 0.2}, ScaleFunction -> (1 &),
ScaleFactor -> 0.025, PlotPoints -> 0.2, Axes -> True, DisplayFunction -> Identity]

Showf[isoclines, directionField, DisplayFunction -> $DisplayFunction]
ClearAll[u, w]

tmax = 500;
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soll = NDSolve[{Derivative[1][u][t] == r*u[t]*p*(1 - u[t]) - u[t]*w[t] - g2*u[t],
Derivative[1][w][t] == a*u[t]*2 - b*w[t] - d*q2*w([t], u[0] == 0.47, w[0] == 0}, {u[t],
wlt]}, {t, 0, tmax}];

traj1 = ParametricPlot[Evaluate[{u[t], w[t]} /. sol1], {t, O, tmax}, PlotRange -> {{0, 1},
{0, 0.2}}, PlotStyle -> RGBColor[0, 1, 0], DisplayFunction -> Identity]

Showf[isoclines, directionField, traj1, DisplayFunction -> $DisplayFunction]
ClearAll[u, w]

sol2 = NDSolve[{Derivative[1][u][t] == r*u[t]"p*(1 - u[t]) - u[t]*w[t] - g2*ult],
Derivative[1][w][t] == a*u[t]*2 - b*w][t] - d*g2*w([t], u[0] == 0.47, w[0] == O}, {u[t],
w[t]}, {t, 0, tmax}];

traj2 = ParametricPlot[Evaluate[{t, u[t]} /. sol2], {t, O, tmax}, PlotRange -> {{0, tmax},

{0, 1}}, PlotStyle -> RGBColor[0, 1, 0], AxesLabel -> {t, u[t]}, DisplayFunction ->
Identity]

Show[traj2, DisplayFunction -> $DisplayFunction]
sol3 = NDSolve[{Derivative[1][u][t] == r*u[t]"p*(1 - u[t]) - u[t]*w[t] - g2*u[t],
Derivative[1][w][t] == a*u[t]*2 - b*w][t] - d*g2*w([t], u[0] == 0.47, w[0] == O}, {u[t],
w[t]}, {t, 0, tmax}];
traj3 = ParametricPlot[Evaluate[{t, w[t]} /. sol3], {t, O, tmax}, PlotRange -> {{0, tmax},
{0, 1}}, PlotStyle -> RGBColor[1, 0, 0], AxesLabel -> {t, w[t]}, DisplayFunction ->
Identity]
Showf[traj3, DisplayFunction -> $DisplayFunction]
p=5r=0.9;d=35;
HyperLogistic[u] = r*u”p*(1 - u);
flu_, w_] := {HyperLogistic[u] - u*w - g2*u, a*u"2 - b*w - d*q2*w};
Equilibrium = N[Solve[{f[u, w] == 0}, {u, w}]];
For[b=0.1,b<=0.2, b +=0.001,
For[a=0.015, a <= 0.025, a += 0.001,
For[g2 = 0.0001, g2 <= 0.01, g2 +=0.0001,
For[j=1,j<=p+1,j++,
If[VectorQ[{u, w} /. Equilibrium[[j]], Head[#1] === Real && 0 <=#1<=1 &,

{SuperStar[u] = u /. Equilibrium[[j]], SuperStar[w] = w /. Equilibrium[[j]]};
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Ju_, w_] = {D[ffu, w], u], D[f[u, w], w]};
MatrixForm[Transpose[J[u, W]]];

JacobianMatrix = Simplify[J[SuperStar[u], SuperStar[w]]];
\[Lambda] = Eigenvalues[JacobianMatrix];

If[Negative[Re[\[Lambda][[1]]]] && Negative[Re[\[Lambda][[2]]]], Null,
If[Positive[Re[\[Lambda][[1]]]] && Positive[Re[\[Lambda][[2]]]],
Print["{u,w}=", {u, w} /. Equilibrium[[j]], " \[Lambda]=", \[Lambda], " Instable
Equilibrium, g*2=", g2, ", a=", a, ", b=", b], Null]], Null]]]1]



APPENDIX TWO
This Mathematica notebook plots the feasible region and the surface for a(u, r).
ClearAll[a, b, d, f, 1, p, u, w]
flu_, w_] =r*up*(1 - u);
equil = Solve[f[u, w] == u*w, w];
SuperStar[w][u_] = Simplify[w /. equil[[1]]];
a = (b*SuperStar[w][u])/u*2;
Test1[u_] = Simplify[D[f[u, w], u] - SuperStar[w][u]];
Test2[u_] = Simplify[3*a*u”2 - b*D[f[u, w], u] - 2*a*u*D[f[u, w], w]];
Test3[u_] = Simplify[(d*Test1[u] - b)*2/(4*d)];
Clear[r, u]
b=0.15;d=3.5;p=5;
feasibleSet = {{0, 0}};
nonfeasibleSet = {};
usteps = 100;
rsteps = 100;
Do[If[Test2[u] > 0 && Test3[u] > Test2[u] && b/d < Test1[u] <b,
AppendTo[feasibleSet, {u, r}], AppendTo[nonfeasibleSet, {u, r}]], {u, 0, 1, 1/usteps}, {r,
0, 1, 1/rsteps}]

feasiblePlot = ListPlot[feasibleSet, PlotRange -> {{0, 1}, {0, 1}}, PlotStyle ->
RGBColor[1, 0, 0], DisplayFunction -> Identity]

nonfeasiblePlot = ListPlot[nonfeasibleSet, PlotRange -> {{0, 1}, {0, 1}}, PlotStyle ->
RGBColor|[0, 0, 1], DisplayFunction -> Identity]

Show[feasiblePlot, nonfeasiblePlot, Prolog -> PointSize[0.005], AxesLabel -> {"u", "r"},
DisplayFunction -> $DisplayFunction]

Plot3D[a, {u, 0, 1}, {r, 0, 1}, AxesLabel -> {"u", "r", "a"}]
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Needs["Graphics ImplicitPlot™]

ImplicitPlot[a == 0.005, {u, 0.001, 1}, {r, 0.001, 1}]
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