Learning outcomes

After completing this section, you will inshaAllah be able to

1. explain what is meant by relative (local) maximum and minimum
2. explain what is meant by absolute maximum and minimum
3. explain the meaning of increasing or decreasing intervals of a function
4. explain what are critical values
5. find critical values
6. determine absolute extrema of a function on a closed interval

- Graphical explanation

- Given a function $f(x)$. It has

Relative maximum at x_{0} if
$f\left(x_{0}\right) \geq f(x)$ for all points x near x_{0}.

Relative minimum at x_{0} if
$f\left(x_{0}\right) \leq f(x)$ for all points x near x_{0}.

What are absolute extreme points?

- Given a function $f(x)$. It has

- Some examples of absolute extreme points

See example 1 done in class

- Graphical explanation.

- Given a function $f(x)$. Then

- Next we look at two important questions about increasing/decreasing functions.
- These questions will lead us to understand the concept of critical values.
Q.1. At which points can a
function change from
increasing to decreasing

A function can change from increasing to decreasing or decreasing to increasing ONLY at points where $f^{\prime}=0$ or f^{\prime} undefined.

- See class explanation
Q.2. At such points will the function surely change from increasing to decreasing or decreasing to increasing?

No. It will not happen always.

- See class explanation and the graphical explanation below.

How is the concept of increasing/decreasing functions related to the concept of relative extreme points?

- We can also look at relative extreme points from the following view.

Relative maximum point: where f changes from increasing to decreasing

Relative minimum point: where f changes from decreasing to increasing

- Before we learn how to find relative extrema, recall from previous page
- Relative extrema can occur only at points where

$$
f^{\prime}=0 \text { or } f^{\prime} \text { undefined }
$$

- But it is not necessary that all such points will be relative extreme points. We must check further to see if
" f changes from increasing to decreasing or decreasing to increasing at these points".

Critical values

- Given a function $f(x)$

The values of x where $f^{\prime}=0$ or f^{\prime} undefined are called critical values of $f(x)$	-These are possible relative extreme points - Relative extrema can only occur at these points But we must check further

See example 2, 3, 4 done in class

- Recall from 4.1_{3} that in general a function may not have absolute extrema. But for closed interval we have a definite answer.

To find absolute extrema of $f(x)$ on $[a, b]$

- Find critical values of $f(x)$ in the interval
- Evaluate $f(x)$ at all critical values
- Evaluate $f(x)$ at end points of interval
- The largest value (of above) is absolute maximum The smallest value (of above) is absolute minimum

