Learning outcomes

After completing this section, you will inshaAllah be able to

1. find higher order derivatives of
a. explicitly defined functions
b. implicitly defined functions

- Given a function $f(x)$.
- Then its derivative $f^{\prime}(x)$ is again a function of x
- So we can differentiate $f^{\prime}(x)$ further.
- This leads to the idea of higher order derivatives of $f(x)$.
- Given $f(x)$. Then
- $f^{\prime}(x)=\frac{d}{d x}(f(x))$
$1^{\text {st }}$ derivative of $f(x)$
- $f^{\prime \prime}(x)=\frac{d}{d x}\left(f^{\prime}(x)\right)$
- $f^{\prime \prime \prime}(x)=\frac{d}{d x}\left(f^{\prime \prime}(x)\right)$

\vdots
- $f^{(k)}(x)=\frac{d}{d x}\left(f^{(k-1)}(x)\right)$

Other notations

- $y^{\prime}, y^{\prime \prime}, \cdots, y^{(k)}$
- $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \frac{d^{3} y}{d x^{3}}, \cdots$
- $\quad D, D^{2}, D^{3}, \cdots$
- We learn computations and concept with the help of examples.

See examples 1, 2, 3, 4, 5, 6, 7, 8, 9 done in class

See example 2 to learn how to find higher order derivatives for implicitly defined functions.

