Learning outcomes

After completing this section, you will inshaAllah be able to

1. find derivatives of expressions involving $\ln u$
2. find derivatives of expressions involving $\log _{b} u$
3. explain what is logarithmic differentiation
4. find derivatives using method of logarithmic differentiation
5. differentiate functions of the form u^{v}

$$
\begin{aligned}
& \text { Recall the following properties } \\
& \text { which are needed for this section }
\end{aligned}
$$

- $\ln (x y)=\ln x+\ln y$
- $\ln \left(\frac{x}{y}\right)=\ln x-\ln y$
- $\ln \left(x^{r}\right)=r \ln x$

Derivatives of functions involving $\log _{b} u$

See examples $1,2,3,4,5$ done in class

Main idea

- Simplify before differentiating

How?

- Aim: To differentiate $\mathrm{y}=\mathrm{f}(\mathrm{x})$
- If $\mathrm{f}(\mathrm{x})$ involves products, quotients or powers then
- take 'In' on both sides of (1)
- simplify using properties of ' $1 n$ '
- differentiate after simplification
- We learn more with the help of example.

See example 6 done in class

Important application of logarithmic differentiation Differentiating functions of the form
u^{v} where both u and v are functions of x

See examples 7, 8 done in class

End of 3.6

