Learning outcomes

After completing this section, you will inshaAllah be able to

1. find linear approximation of non-linear functions
2. find differential of a function
3. use differentials to approximate small changes or errors

Linear approximation

- Why do we need linear approximations?
- See class explanation
- How to approximate?
- Given a function $y=f(x)$.
- Equation of its tangent line at $(a, f(a))$ is

$$
y-f(a)=f^{\prime}(a)(x-a)
$$

or

$$
y=f(a)+f^{\prime}(a)(x-a)
$$

-

Main idea of linear approximation

Near point $x=a$, the tangent line and the function $\mathrm{f}(\mathrm{x})$
have approximately same graph'

Linear Approximation of $f(x)$

For values of x near $x=a$
$f(x) \approx f(a)+f^{\prime}(a)(x-a)$

See examples 1, 2 done in class

Differential of a function

Given a function $y=f(x)$.
The differential ' $d y$ ' of y is given by

$$
d y=f^{\prime}(x) d x
$$

where $d x$ denotes change in x

See example 3 done in class
Finding change Δy in $y=f(x)$ corresponding to change $\Delta x=d x$ in x

Given a function $y=f(x)$.
If x changes from x to $x+d x$ then

$$
\begin{equation*}
\Delta y=f(x+\Delta x)-f(x) \tag{*}
\end{equation*}
$$

See class explanation to see
difference between $d y$ and Δy

See example 4 done in class

Using differentials to approximate small change Δy in the function

- Note: For small $\Delta x=d x$ we have $\Delta y \approx d y$.
- Since finding $d y$ is easy, it is a good idea to use $d y$ to approximately find Δy.

See example 5 done in class

When you make measurements "are you always exact?"

- Suppose we make a small error Δx in measuring x.
- This will obviously lead to an error Δy in $y=f(x)$.
- As seen above, for a small change Δx, we have $\Delta y \approx d y$.

So we can use $d y$ to estimate error Δy in $y=f(x)$

We will find following types of errors

- $d y:$

Error in y

- $\frac{d y}{y}$:
- Relative error expressed as percentage:

Percentage error

Which of these give better information?

See example 6 done in class

End of 3.10

