Learning outcomes

After completing this section, you will inshaAllah be able to

1. know basic rules for differentiation
2. know and use the power rule formula for differentiation
3. find derivatives of functions involving exponential function e^{x}
4. apply derivatives to study tangent lines

How do we find derivatives practically?

By a combination of rules and formulas

Rules set \#

- $\frac{d}{d x}(c)=0$
- $\frac{d}{d x}(c \cdot f(x))=c \cdot \frac{d}{d x}(f(x))$
- $\frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x}(f(x)) \pm \frac{d}{d x}(g(x))$

The power rule formula: $\mathbf{1}^{\text {st }}$ important formula

See examples 1, 2, 3 done in class

- Recall the following facts from Chapter 2.
- Slope of a curve at a point = slope of tangent line at that point
- Slope of tangent line to curve $y=f(x)$ at $\left(x_{0}, y_{0}\right)$

See examples $4,5,6,7,8,9$ done in class

- Given a function $f(x)$.
- Then its derivative $f^{\prime}(x)$ is again a function of x
- So we can differentiate $f^{\prime}(x)$ further.
- This leads to the idea of higher order derivatives of $f(x)$.
- Given $f(x)$. Then
$\begin{array}{ll}f^{\prime}(x)=\frac{d}{d x}(f(x)) & 1^{\text {st }} \text { derivative of } f(x) \\ \text { - } f^{\prime \prime}(x)=\frac{d}{d x}\left(f^{\prime}(x)\right) & 2^{\text {nd }} \text { derivative of } f(x) \\ \text { - } f^{\prime \prime \prime}(x)=\frac{d}{d x}\left(f^{\prime \prime}(x)\right) & 3^{\text {rd }} \text { derivative of } f(x)\end{array}$
\vdots
- $f^{(k)}(x)=\frac{d}{d x}\left(f^{(k-1)}(x)\right)$

Other notations

- $y^{\prime}, y^{\prime \prime}, \cdots, y^{(k)}$
- $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \frac{d^{3} y}{d x^{3}}, \cdots$
- $\quad D, D^{2}, D^{3}, \cdots$

