Learning outcomes

After completing this section, you will inshaAllah be able to

- 1. know basic rules for differentiation
- 2. know and use the power rule formula for differentiation
- 3. find derivatives of functions involving exponential function e^x
- 4. apply derivatives to study tangent lines

How do we find derivatives practically?

By a combination of rules and formulas

Rules set # 1

- $\bullet \quad \frac{d}{dx}(c) = 0$
- $\frac{d}{dx}(c \cdot f(x)) = c \cdot \frac{d}{dx}(f(x))$
- $\frac{d}{dx}(f(x) \pm g(x)) = \frac{d}{dx}(f(x)) \pm \frac{d}{dx}(g(x))$

The power rule formula: 1st important formula

 $\frac{d}{dx}x^n = nx^{n-1}$

True for any 'n'

We will see better use of these formulas in later sections.

Derivatives of functions involving e^x

Differentiation formula for e^x

$$\frac{d(e^x)}{dx} = e^x$$

See examples 1, 2, 3 done in class

Application: Slopes and tangent lines

- Recall the following facts from Chapter 2.
 - Slope of a curve at a point = slope of tangent line at that point
 - Slope of tangent line to curve y = f(x) at (x_0, y_0)

is given by
$$\frac{dy}{dx}$$
 at (x_0, y_0) .

See examples 4, 5, 6, 7, 8, 9 done in class

when

Higher order derivatives: Introduction & Computations

- Given a function f(x).
- Then its derivative f'(x) is again a function of x
- So we can differentiate f'(x) further.
- This leads to the idea of higher order derivatives of f(x).
- Given f(x). Then

 1^{st} derivative of f(x)

 2^{nd} derivative of f(x)

• $f'(x) = \frac{d}{dx}(f(x))$ • $f''(x) = \frac{d}{dx}(f'(x))$ • $f'''(x) = \frac{d}{dx}(f''(x))$ \vdots • $f^{(k)}(x) = \frac{d}{dx}(f^{(k-1)}(x))$

 3^{rd} derivative of f(x)

 k^{th} derivative of f(x)

Other notations

- $\bullet \quad y', y'', \cdots, y^{(k)}$
- $\bullet \quad \frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \dots$
- D,D^2,D^3,\cdots

See examples 10, 11 done in class