Learning outcomes

After completing this section, you will inshaAllah be able to

1. explain the definition of derivative of a function
2. find derivatives using definition

- In the last section we saw that the derivative of $f(x)$ at a point ' a ' is given by

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

- Now we study the concept of derivative of $f(x)$ at any
point x as a a function.

The derivative of $f(x)$ is defined by

if the limit exists.

- Another notation: $\frac{d y}{d x}$
- $f^{\prime}(a)$ means derivative at the point a
See examples $1,2,3$ done in class

Geometric interpretation of derivative

See example 4 done in class

Left/Right derivative of a function Existence of a derivative

The right derivative of $f(x)$ is defined by $f_{+}^{\prime}(a)=\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}$

The derivative $f^{\prime}(a)$ exists if the left

and right derivatives are same.
i.e. the function will surely be not differentiable at a point where it is discontinuous

Also note the fact that "if a function is differentiable at a point then it is continuous at that point"

- The next example uses all of these ideas.

See example 5 done in class

End of 2.8

