Learning outcomes

After completing this section, you will inshaAllah be able to

1. use a special type of limit to find slopes of tangent lines
2. use a special type of limit to find rate of change of a function
3. explain the definition of derivative of a function at a point
4. use a special type of limit to find derivative at a point

- Given a curve $y=f(x)$

See example 1 done in class

If we take $x=a+h$ then the above definition becomes

- Given a function $y=f(x)$

Average rate of change of $f(x)$ over $[a, a+h]$

$$
y_{a v}=\frac{\text { change in } f(x)}{\text { change in } x}=\frac{f(a+h)-f(a)}{h}
$$

Instantaneous rate of change in $f(x)$ at $x=a$

See class
explanation

$$
=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Every day example

$\boldsymbol{S}=f(t)$: \quad position of object at time t
Average velocity $v_{a v}$ over interval $[a, a+h]$
$=$ average rate of change of displacement over interval

$$
\Rightarrow \quad v_{a v}=\frac{f(a+h)-f(a)}{h}
$$

See example 3
done in class

Velocity at time $t=$
Instantaneous rate of change of displacement at time

$$
\Rightarrow \quad v=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

- Given a function $y=f(x)$.
- We have seen above that limits of the form

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

are very special and can be used to answer important questions.

- For example, the rate of change of $f(x)$ at a point ' x ' is given by

$$
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

- Therefore such limits become very important.
- The study of important limit of above type leads to the concept of derivative, which we study next.

The derivative of $f(x)$ at a point ' a ' is defined by

if the limit exists.

If we take $x=a+h$ then the above definition becomes

The derivative of $f(x)$ at a point ' a ' is defined by

if the limit exists.

