Learning outcomes

After completing this section, you will inshaAllah be able to

1. compute limits of the form $\lim _{x \rightarrow \pm \infty} f(x)$
2. explain what are horizontal asymptotes
3. find horizontal asymptotes of a function

Based on following basic limits

- $\lim _{x \rightarrow \infty} k=k \quad k:$ constant
- $\lim _{x \rightarrow \pm \infty} \frac{k}{x^{n}}=0 \quad$ for $n>0$
- $\lim _{x \rightarrow \infty} x^{n}=\infty \quad$ for $n>0$
- $\lim _{x \rightarrow-\infty} x^{n}= \begin{cases}\infty & n=2,4,6, \cdots \\ -\infty & n=1,3,5, \ldots\end{cases}$

Technique for finding $\lim _{x \rightarrow \pm \infty} f(x)$

- Take highest power common from numerator \& denominator

Simplify \& use above basic limits

See examples $1,2,3,4,5,6,7,8$ done in class

What to do if $\lim _{x \rightarrow \pm \infty} f(x)$ gives $\infty-\infty$

- We learn with the help of example

See example 9 done in class

- Look at the following graph.

It runs (very close \&) parallel to graph up to $x= \pm \infty$ What's special about line $\mathrm{y}=1$

What happens to graph when
 we x gets near $\pm \infty$

The graph approaches (gets closer
to) the horizontal line $\mathrm{y}=1$

```
A horizontal line y=b is called horizontal asymptote of
graph of f(x) if
- }\mp@subsup{\operatorname{lim}}{x->\infty}{}f(x)=
or
- }\mp@subsup{\operatorname{lim}}{x->-\infty}{}f(x)=
```

See examples $10,11,12$ done in class

