Learning outcomes

After completing this section, you will inshaAllah be able to

1. get an idea about the meaning of a continuous function
2. check whether a function is continuous or discontinuous at a point
3. use basic properties of continuous functions
4. know important examples of continuous functions
5. explain difference between different types of discontinuities
a. removable discontinuity
b. jump discontinuity
c. infinite discontinuity
6. explain and apply intermediate value theorem

Meaning of continuous function

- The following graphs have gaps. Let's see what is happening in these graphs.

Continuity \approx no gap(s) in the graph.
Clearly: To have continuity at $\mathrm{x}=\mathrm{c}$, none of above should happen

A function $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{a}$ if $\lim _{x \rightarrow a} f(x)=f(a)$
i.e.

- $f(a)$ is defined
- $\lim _{x \rightarrow a} f(x)$ exists
- $\lim _{x \rightarrow a} f(x)=f(a)$

To show $f(x)$ is continuous at $x=a$ we must show

1. $f(a)$ is defined
2. $\lim _{x \rightarrow a} f(x)$ exists $\lim _{x \rightarrow a} f(x)$

$$
\text { 3. } \lim _{x \rightarrow a} f(x)=f(a)
$$

See examples $1,2,3,4,5,6,7,8,9,10,11$ done in class

Basic Properties

If f, g are continuous at point ' a ' then

1. $f \pm g$
2. $f \cdot g$
3. $c f$
(c constant)
4. $\frac{f}{g}$
are also continuous at ' a '.
The composition $f \circ g$ of continuous functions f, g is also continuous

What are different types of discontinuities that can occur?

- We learn the different types of discontinuities with the help of examples.

Removable discontinuity

Infinite discontinuity
See example 13 and explanation provided in class

Jump discontinuity

See examples 15,16 done in class

- Look at following graphs for left end point $\mathrm{x}=\mathrm{a}$

Continuity \approx no gap(s) in the graph.
Clearly: To have continuity at $\mathrm{x}=\mathrm{c}$, none of above should happen

$$
\mathrm{f}(\mathrm{x}) \text { is continuous at left end point } \mathrm{x}=\mathrm{a} \text { of }[\mathrm{a}, \mathrm{~b}] \text { if } \lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

i.e.

- $f(a)$ is defined
- $\lim _{x \rightarrow a^{+}} f(x)$ exists $x \rightarrow a^{+}$

(i.e finite)

- $\lim _{x \rightarrow a^{+}} f(x)=f(a)$

Similarly
$\mathrm{f}(\mathrm{x})$ is continuous at right end point $\mathrm{x}=\mathrm{b}$ of $[\mathrm{a}, \mathrm{b}]$ if $\lim _{x \rightarrow b^{-}} f(x)=f(b)$

Continuity on an interval

A function $\mathrm{f}(\mathrm{x})$ is continuous on an interval if it is continuous at every point in the interval

Limits of composition of continuous functions

See example 18 done in class

Intermediate value theorem $\&$ applications

See examples 19, 20, 21 done in class

End of 2.5

