Learning outcomes

After completing this section, you will inshaAllah be able to

1. an idea about the meaning and definition of limit
2. get an idea about the meaning of one-sided limit
3. know the meaning of existence of limit
4. understand and compute infinite limits
5. find vertical asymptotes of a function

Meaning of limit

- We learn by an example

Example: To understand $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$

- We use the graph of the function and a table of values near $x=1$
- By graph

Note: The function $y=\frac{x^{3}-1}{x-1}$ is not defined at $x=1$. In fact the circle ' o ' in the graph indicates that this point is missing from the graph.

Question
What happens to the values of
$y=\frac{x^{3}-1}{x-1}$ as x gets closer to 1

- By table

A table of values of the function near $x=1$ is

x	0.5	0.75	0.9	0.99	0.999	1	1.001	1.01	1.1	1.25	1.5
y	1.750	2.313	2.710	2.970	2.997	not defined	3.003	3.030	3.310	3.813	4.750

- Conclusion: As the values of x get closer and closer to 1 , we see that the values of y get closer and closer to 3 .
- That means $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}=3$.

See class explanation for more understanding
(Specially "Run-and-Hit idea"')

Understanding the definition of limit

See example 1 done in class

One-sided limits

- We learn by an example
- Consider a function $y=f(x)$ given by the following graph.

- From the graph we have:
$>$ When we approach 0 from the left side, the value of $f(x)$ approaches -1 .
$>$ When we approach 0 from the right side, the value of $f(x)$ approaches 1 .
- We describe this situation by saying

The limit of $f(x)$ is -1 as x approaches 0 from left and write as

$$
\lim _{x \rightarrow 0^{-}} f(x)=-1 \text {, and }
$$

$>$ The limit of $f(x)$ is 1 as x approaches 0 from right and write as

$$
\lim _{x \rightarrow 0^{+}} f(x)=1
$$

Q. Will we always get different answers of left and right limits?

Ans. No. Check what happened in example 1 above.

Meaning of existence of a limit

- We see from above that some time the left side \& right side limit will be same, and some time these will be different.
- $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} f(x)=L$ if
left side limit $=$ right side limit i.e. $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L$

Example:

Q: Does $\lim _{x \rightarrow 0} f(x)$ exist?
Q. Does $\lim _{x \rightarrow 1} f(x)$ exist?

See examples 2, 3 done in class

What are infinite limits?
(those limits whose answer is ∞ or $-\infty$)

- Look at the following graphs to understand the meaning of infinite limits
$\xrightarrow{\substack{a=\frac{1}{x-a}}} \xrightarrow{\substack{a}}$

Computing infinite limits $\lim _{x \rightarrow a} f(x)$
i.e. the answer is ∞ or $-\infty$

This generally happens when directly substituting $x=a$ gives $\left(\frac{k}{0}\right)$ form $(k \neq 0)$

- Look at the following graphs again.
$y=\frac{1}{x-a}$

$$
\begin{aligned}
& \lim _{x \rightarrow a^{+}} \frac{1}{x-a}=+\infty \\
& \lim _{x \rightarrow a^{-}} \frac{1}{x-a}=-\infty
\end{aligned}
$$

\square It runs (very close \&) parallel to graph up to $\pm \infty$
we get near the value $x=a$
The graph either shoots up to ∞ or shoots down to $-\infty$

A vertical line $x=a$ is called vertical asymptote of graph of $f(x)$ if one of the following is true
$\lim _{x \rightarrow a^{-}} f(x)=\infty$ or $-\infty$

- $\lim _{x \rightarrow a^{+}} f(x)=\infty$ or $-\infty$
- $\lim _{x \rightarrow a} f(x)=\infty$ or $-\infty$

Special situation for rational functions
Vertical asymptotes for $f(x)=\frac{P(x)}{Q(x)}$

- $x=a$ is a vertical asymptote if

$$
Q(a)=0 \text { and } P(a) \neq 0
$$

But it is better to compute limits to get complete idea of the situation

Note
usefulness of

