KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS & STATISTICS Term 181 STAT 302 Exam 5

Name: _____

ID #:

1) Let Y_1, \dots, Y_n denote the random variables associated with a sample of size *n* from a density function $f_Y(y|\theta)$. Explain the Bayesian paradigm, with all its details and using proper mathematical/statistical notation, in estimating a function $t(\theta)$. (5 marks)

2) Show that the posterior density is proportional to the product of the conditional likelihood of the data and the prior density for the parameter θ . (3 marks)

- 3) Let Y₁,..., Y_ndenote a random sample from a normal population with unknown mean θ and known variance σ². Assume that θ has normal prior with mean η and variance δ². The posterior distribution of θ is normal with mean η* = δ²u+σ²η/nδ²+σ² and variance δ*² = σ²δ²/nδ²+σ² with u = ∑ y_i
 a) Express the Bayes' estimator of θ in terms of Ȳ and η, and discuss its behavior as a function of
 - (2 marks) the sample size.

b) Find the Bayes' estimator of θ^2 , in terms of n, u, η, δ^2 , and σ^2 . (2 marks)

c) Given the following information $\overline{Y} = 100$, n = 10, $\eta = 50$, $\delta^2 = 220$, $\sigma^2 = 125$. Construct a 90% credible interval for θ . (2 marks)

- 4) Let *Y* be a single observation from a density $f_Y(y|\theta) = \frac{2y}{\theta^2} I_{(0,\theta)}(y)$. Assume θ has a Uniform (0,1) prior.
 - a) Find the posterior distribution of θ .

(3 marks)

b) Is the Uniform (0,1) a conjugate prior? Explain.

(1 mark)

c) If
$$Y = \frac{1}{2}$$
, test the hypothesis $H_0: \theta \le 3/4$, $vs. H_a: \theta > 3/4$ (2 marks)